A very simple voltaic pile may be constructed with “gold-leaf” paper. Take two sheets of the gold paper and paste them back to back, and two of silver paper; cut them into discs about the size of a five-shilling-piece (or even of half-a-crown), and place them one on the top of the other, so as the gold and silver may be alternate; press the discs together slightly when a good many layers have been piled up, and introduce them into a glass tube; close the ends of the tubes with corks through which wires are passed from the discs top and bottom. It will be found that the ends are charged with opposite electricities. This is the Zamboni pile, or the dry pile, which was constructed of hundreds of paper discs “tinned on one side, and covered with binoxide of manganese on the other,” put into a tube, and closed with brass stoppers. The electricity will last a long time in a dry pile.
In the accompanying illustration of the Galvanic Pile a disc of copper is at the bottom and a disc of zinc at the top. The latter, P, is the positive pole; the former, N, the negative. When the wires are united the current is closed, and no sign of disturbance can be detected, although the action, of course, is proceeding within the pile. The opposite kinds of electricity neutralize each other, and if a continuous supply were not kept up the electricity would disappear; but as it is, a powerful current is obtained, and if the wire be divided a spark will be observed.
Fig. 222.—Bunsen Battery.
There are many forms of galvanic batteries. The Trough Battery or Cruickshank has been mentioned. There is Wollaston’s Pile, Bunsen’s Battery, Grove’s Battery, and Daniell’s, called the “Constant” Battery. In this last a porous earthenware cell is placed within a cylinder of copper; in the cell a rod of zinc is inserted, the cell being filled with diluted sulphuric acid,—one part of acid to ten parts of water,—and in the outer cylinder is a solution of sulphate of copper.
Fig. 223.—Daniell’s Battery.
Fig. 224.—Grove’s Battery.
The cut above illustrates Daniell’s Battery (fig. 223) with connectors.