We may now proceed to look at the Wheatstone needle telegraph and see the method of working it. We know already that when a pair of metallic plates are immersed in a fluid which acts chemically more rapidly on the one than the other, and a wire connects the upper parts of these plates, this wonderful agency is set in motion, and circulates from the one plate to the other (fig. 242). This arrangement may be best shown by using one plate of zinc and the other of copper, and a dilute solution of sulphuric acid for the liquid; this, however, produces by far too little of the agent to be used on a telegraphic line, there are therefore combinations of such pairs of plates, so arranged that the power of one pair shall be added to the next in such a way that at the end of the series (called a “battery”) there shall be a great increase of the power accumulated; this arrangement is shown in fig. 244. Now (if the power be sufficient) it does not signify what length of wire there may be between the two ends of this arrangement or “battery”; whether they be connected by a few feet or many hundred miles, the electricity passes instantaneously from one end to the other; and furthermore, it has been found in practice, that this electrical influence can be transmitted through the earth in one direction if sent by a wire in the other; for instance, if a wire from one end of the battery be carried on from London to Liverpool, instead of having another from Liverpool to London, to connect the two ends of the battery, it is found to answer the same purpose if the end of the wire at Liverpool be fastened to a plate of metal buried beneath the surface of the earth, and the other end of the battery at London furnished with a similar plate, also buried. In this arrangement, the electricity will pass beneath the surface of the earth from Liverpool to London, and through the wire from London to Liverpool, thus completing the circuit. The end from which the electricity passes is called the “positive electrode,” that to which it returns, the “negative electrode.” Fig. 245 will show this arrangement.

Fig. 243.—The Needle Telegraph.

Fig. 244.—The Battery.

Fig. 245.—The circuit.

Fig. 246. Fig. 247. Fig. 248.
Magnetic needles.

If a bar-magnet be suspended on a pivot so that it may turn freely, it will (as is well known) turn with one end to the north, which is owing to a current of natural electricity passing round the earth in the direction of east and west, the magnet crossing the current at a right angle; and if a coil of wire coated with silk (to keep one part of the coil from another) be placed round, above, and below the long axis of a bar of steel, as shown at fig. 246, and a current of electricity passed through the wire, the steel becomes a magnet, and will take a direction similar to the natural magnet, more or less, at right angles to this coil, as in fig. 247, according to the intensity of the current; and the instant this electrical current is stopped, it will resume its former direction. This fact has been made use of to form the principal feature of all English telegraphs; such a needle is mounted in an upright position, and instead of its tendency to turn to the north, a tendency to maintain the upright position is given to it by having one of the arms of the magnet a little heavier than the other; such a magnet having a coil of wire surrounding it. When the electric current passes through the coil, it will turn out of the upright position to either one side or the other, according to the direction of the current, from its tendency to assume a position at an angle thereto (fig. 248); if the current be stopped even for an instant, then the needle, or magnet, will again assume its upright position. The pivot of this magnet is brought forward, and has on its front part another needle, which turns with it; this is visible on the outside of the apparatus, and is looked at to ascertain the movement of the one within. There is also an arrangement called a “commutator,” so contrived, that by moving a handle to the right or left, a connection shall be made with either end of the battery, and thereby cause the direction of the current and needle to be changed at pleasure; also by moving the handle into an upright position the current shall be stopped; and finally, by a third movement, a bell shall be rung. Now, as has already been explained, when the current goes in one direction, the magnetic needle is deflected in that direction; and when the current is reversed the position of the needle is also reversed, and when the current is cut off the needle will resume its perpendicular position. If two such needles and two such handles be at each station, when the handles at one station are moved, the needles at the other station will take on a similar movement; and when the handles at that station are moved, the needles at the first station will be moved to correspond. This constitutes the system of communication kept up by the electric telegraphs in England; but it remains to be shown how all the letters of the alphabet and numerals can be represented by the movements of the two handles. These handles can be placed in eight positions (besides the upright one) by a single movement of each hand, as may be seen in fig. 249; and these eight signals if repeated, or made twice in rapid succession will make eight more, and by being repeated three times will constitute a third eight, making twenty-four; finally, by a rapid motion right and left, they may be caused to signify a fourth eight, or thirty-two signals, which are found to be sufficient for every purpose, and by practice may be both produced and read off with facility. Before a message is about to be delivered the commutator is so placed as to ring a bell, which is done by the same arrangement as in a common alarm-clock, but the action is set in motion by a peculiar contrivance, which depends upon the property a bar of soft iron has of becoming magnetic when a wire is wound round it and a current of electricity passed through this wire; this magnetic property exists only as long as the current passes, and stops the instant it is cut off. The catch of the alarm is disengaged by the movement of a bar of iron being drawn to the magnet while the current passes, and forced back again by a spring when it is stopped, thus setting in action the mechanism of the alarm; or in some cases there is a simple contrivance for causing a rapid flow and stoppage of the electricity, so that the bar is alternately attracted by the magnet and released by the spring, and this motion rings the bell as long as it is continued. The bell is always rung to give notice that a message is about to be sent, and at the station where it rings, the bell at the former station is rung in return, to show that they are prepared to receive the message: which is then spelt, letter after letter, by moving the handles into the proper positions, and as it is being sent, the eye is kept on the dials, certain single signs are made and recognised, which will communicate any reply from the station to which the message is being sent, such as “repeat,” or “not understood.” The wires which convey the electricity are made of galvanised iron (iron coated with zinc), and as they must be kept from all communication with the earth by some substance incapable of conducting it, they are therefore stretched between wooden poles (fig. 250), and rest upon sockets or supports of glass or glazed earthenware, which are both substances incapable of conducting the electricity to the earth (fig. 251), and in order that these may be quite dry, an inverted cup of metal, glass, or earthenware is placed over it, or the whole is blown or moulded in one piece. If the support for the wires were not kept from the rain, the wet would form a conducting surface, and allow the electricity to escape into the earth.