Fig. 20.—Nicholson’s Areometer, contrived to serve as a balance.

Fig. 20 represents Nicholson’s Areometer, which any one may construct for himself, and which, as it is here represented, constitutes another kind of balance. A glass balloon, filled with air, is hermetically closed with a cork, through which is passed a cylinder of wood, surmounted by a wooden disc, D. The apparatus is terminated at its lower end by a small tray, C, on which one can put pieces of lead in variable quantities. It is then plunged into a glass filled with water. The pieces of lead on the tray, C, are added by degrees, until the stem of the areometer rises almost entirely above the level of the water; it is next passed through a ring, which keeps it in position, and which is fastened to the upper part of the glass by means of four iron wires in the shape of a cross. The stem is divided in such a way that the space comprised in each division represents the volume of a cubic centimetre. Thus arranged, the apparatus constitutes a balance. The object to be weighed is placed on the disc, D, and the areometer sinks in the water, oscillates, and then remains in equilibrium. If the stem sinks five divisions, it is evident that the weight of the object corresponds to that of five cubic centimetres of displaced water, or five grams.

It is obvious, therefore, from the preceding examples, that it is not impossible to construct a weighing apparatus with ordinary and very inexpensive objects. We can, in the same way, show that it is possible to perform instructive experiments with no appliances at all, or, at any rate, with common things, such as everyone has at hand. The lamented Balard, whose loss science has had recently to deplore, excelled in chemical experiments without a laboratory; fragments of broken glass or earthenware were used by him for improvising retorts, bottles and vases for forming precipitates, and carrying on many important operations.

Scheele also operated in like manner; he knew how to make great discoveries with the humblest appliances and most slender resources. One cannot too earnestly endeavour to imitate such leaders, both in teaching others and instructing oneself.

The laws relating to the weight of bodies, the centre of gravity, and stable or unstable equilibrium, may be easily taught and demonstrated by means of a number of very familiar objects. By putting into the hands of a child a box of soldiers cut in elder-wood, the end of each fixed into half a bullet, we provide him with the means of making some easy experiments on the centre of gravity. According to some authorities on equilibrium, it is not impossible, with a little patience and delicacy of manipulation, to keep an egg balanced on one of its ends. This experiment should be performed on a perfectly horizontal surface, a marble chimney-piece, for example. If one can succeed in keeping the egg up, it is, according to the most elementary principles of physics, because the vertical line of the centre of gravity passes through the point of contact between the end of the egg and the surface on which it rests.

Fig. 21.—Experiment on “centre of gravity.”

Fig. 21 reproduces a curious experiment in equilibrium, which is performed with great facility. Two forks are stuck into a cork, and the cork is placed on the brim of the neck of a bottle. The forks and the cork form a whole, of which the centre of gravity is fixed over the point of support. We can bend the bottle, empty it even, if it contains fluid, without the little construction over its mouth being in the least disturbed from its balance. The vertical line of the centre of gravity passes through the point of support, and the forks oscillate with the cork, which serves as their support, thus forming a movable structure, but much more stable than one is inclined to suppose. This curious experiment is often performed by conjurors, who inform their audience, that they will undertake to empty the bottle without disturbing the cork. If a woodcock has been served for dinner, or any other bird with a long beak, take off the head at the extreme end of the neck; then split a cork so that you can insert into it the neck of the bird, which must be tightly clipped to keep it in place; two forks are then fixed into the cork, exactly as in the preceding example, and into the bottom of the cork a pin is inserted. This little contrivance is next placed on a piece of money, which has been put on the opening of the neck of the bottle, and when it is fairly balanced, we give it a rotatory movement, by pushing one of the forks as rapidly as we please, but as much as possible without any jerk (fig. 22). We then see the two forks, and the cork surmounted by the woodcock’s head, turning on the slender pivot of a pin. Nothing can be more comical than to witness the long beak of the bird turning round and round, successively facing all the company assembled round the table, sometimes with a little oscillation, which gives it an almost lifelike appearance. This rotatory movement will last some time, and wagers are often laid as to which of the company the beak will point at when it stops. In laboratories, wooden cylinders are often to be seen which will ascend an inclined plane without any impulsion. This appears very surprising at first, but astonishment ceases when we perceive that the centre of gravity is close to the end of the cylinder, because of a piece of lead, which has been fixed in it.

Fig. 22.—Another experiment on the same subject.