A very small quantity of ballast thrown away will make a great difference; a handful will raise the balloon many feet, and a chicken bone cast out occasions a rise of thirty yards. The ballast is carried in small bags, and consists of dry sand, which speedily dissipates in the air as it falls. By throwing out ballast the aeronaut can ascend to a great height—in fact, as high as he can go, the limit apparently for human existence being about seven miles, when cold and rarefied air will speedily put an end to existence.

It is a curious fact, that however rapidly the balloon may be travelling through the air, the occupants are not sensible of the motion. This, in part, arises from the impossibility of comparing it with other objects. We pass nothing stationary which would indicate the pace at which we travel. But the absence of oscillation is also remarkable; even a glass of water may be filled brim-full, and to such a level that the water is above the rim of the glass, and yet not a drop will fall. This experiment was made by M. Flammarion. When the aeronaut has ascended some distance the earth loses its flat appearance, and appears as concave as the firmament above. Guide ropes are usually attached to balloons, and as they rest upon the ground they relieve the balloon of the amount of weight the length trailing would cause. They thus act as a kind of substitute for ballast as the balloon is descending. Most of the danger of aerial travelling lies in the descent; and though in fine weather the aeronaut can calculate to a nicety where he will descend, on a windy day, he must cast a grapnel, which catches with an ugly jerk, and the balloon bounds and strains at her moorings.

Although many attempts have been made to guide balloons through the air, no successful apparatus has ever been completed for use. Paddles, sails, fans, and screws have all been tried, but have failed to achieve the desired end. Whether man will ever be able to fly we cannot of course say. In the present advancing state of science it may not be impossible ere long to supply human beings with an apparatus worked by electricity, perhaps, which will enable them to mount into the air and sustain themselves. But even the bird cannot always fly without previous momentum. A rook will run before it rises, and many other birds have to “get up steam,” as it were, before they can soar in the atmosphere. Eagles and such heavy birds find it very difficult to rise from the ground. We know that vultures when gorged cannot move at all, or certainly cannot fly away; and eagles take up their positions on high rocks, so that they may launch down on their prey, and avoid the difficulty of rising from the ground. They swoop down with tremendous momentum and carry off their booty, but often lose their lives from the initial difficulty of soaring immediately. We fear man’s weight will militate against his ever becoming a flying animal. When we obtain a knowledge of the atmospheric currents we shall no doubt be able to navigate our balloons; but until then—and the information is as yet very limited, and the currents themselves very variable—we must be content to rise and fall in the air, and travel at the will of the wind in the upper regions of the atmosphere.


CHAPTER XXIV.
CHEMISTRY.
INTRODUCTION.

WHAT CHEMISTRY IS—THE ELEMENTS—METALLIC AND NON-METALLIC—ATOMIC WEIGHT—ACIDS—ALKALIS—BASES—SALTS—CHEMICAL COMBINATION AND STUDY.

Chemistry is the science of phenomena which are attended by a change of the objects which produce them. We know that when a candle burns, or when wood is burned, or even a piece of metal becomes what we term “rusty,” that certain chemical changes take place. There is a change by what is termed chemical action. Rust on iron is not iron; it is oxide of iron. The oxygen of the air causes it. So we endeavour, by Chemistry, to find out the nature of various bodies, their changes, and the results.

Fig. 301.—The Laboratory.