Acids are compounds which possess an acid taste, impart red colour to vegetable blues, but lose their qualities when combined with bases. Hydrogen is present in all acids. There are insoluble acids. Silicic acid, for instance, is not soluble in water, has no sour taste, and will not redden the test litmus paper. On the other hand, there are substances (not acids) which possess the characteristics of acids, and most acids have only one or two of these characteristics.

Thus it has come to pass that the term “acid” has in a measure dropped out from scientific nomenclature, and salt of hydrogen has been substituted by chemists. For popular exposition, however, the term is retained.

Alkalis are bases distinguished by an alkaline taste. The derivation is from Arabic, al-kali. They are characterized by certain properties, and they change vegetable blues to green, and will restore the blue to a substance which has been reddened by acid. They are soluble in water, and the solutions are caustic in their effects. Potash, soda, and ammonia are alkalis, or chemically, the oxides of potassium, sodium, ammonium, lithium, and cæsium are all alkalis. Potash is sometimes called “caustic” potash. There are alkaline earths, such as oxides of barium, strontium, etc. Bases may be defined as the converse of acids.

Acids and alkalis are then evidently opposite in character, and yet they readily combine, and in chemistry we shall find that unlike bodies are very fond of combining (just as opposite electricities attract each other), and the body made by this combination differs in its properties from its constituents.

Salts are composed of acids and bases, and are considered neutral compounds, but there are other bodies not salts, which likewise come under that definition—sugar, for instance. As a rule, when acids and alkalis combine salts are found.

Chemical phenomena are divided into two groups, called inorganic and organic, comprising the simple and compound aspects of the subject, the elementary substances being in the first, and the chemistry of animals or vegetables, or organic substances, in the latter. In the inorganic section we shall become acquainted with the elements and their combinations so often seen as minerals in nature. Chemical preparations are artificially prepared. To consider these elements we must have certain appliances, and indeed a laboratory is needed. Heat, as we have already seen, plays a great part in developing substances, and by means of heat we can do a great deal in the way of chemical decomposition. It expands, and thus diminishes cohesion; it counteracts the chemical attraction. Light and electricity also decompose chemical combinations. But before proceeding it will be as well to notice a few facts showing how Nature has balanced all things.

The earth, and its surrounding envelope, the atmosphere, consist of a number of elements, which in myriad combinations give us everything we possess,—the air we breathe, the water we drink, the fire that warms us, are all made up of certain elements or gases. Water, hydrogen and oxygen; air, oxygen and nitrogen. Fire is combustion evolving light and heat. Chemical union always evolves heat, and when such union proceeds very rapidly fire is the result.

In all these combinations we shall find when we study chemistry that not a particle or atom of matter is ever lost. It may change or combine or be “given off,” but the matter in some shape or way exists still. We may burn things, and rid ourselves, as we think, of them. We do rid ourselves of the compounds, the elements remain somewhere. We only alter the condition. During combustion, as in a candle or a fire, the simple bodies assume gaseous or other forms, such as carbon, but they do not escape far. True they pass beyond our ken, but nature is so nicely balanced that there is a place for everything, and everything is in its place under certain conditions which never alter. We cannot destroy and we cannot create. We may prepare a combination, and science has even succeeded in producing a form like the diamond—a crystal of carbon which looks like that most beautiful of all crystals, but we cannot make a diamond after all. We can only separate the chemical compounds. We can turn diamonds into charcoal it is true, but we cannot create “natural” products. We can take a particle of an element and hide it, or let it pass beyond our ken, and remain incapable of detection, but the particle is there all the time, and when we retrace our steps we shall find it as it was before.

This view of chemistry carries it as a science beyond the mere holiday amusement we frequently take it to be. It is a grand study, a study for a lifetime. Nature is always willing, like a kind, good mother as she is, to render us up her secrets if we inquire respectfully and lovingly. The more we inquire the more we shall find we have to learn. In these and the following pages we can only tell you a few things, but no one need be turned away because he does not find all he wants. We never do get all we want in life, and there are many first-rate men—scientists—who would give “half their kingdom” for a certain bit of knowledge concerning some natural phenomena. There are numerous excellent treatises on chemistry, and exhaustive as they are, at present they do not tell us all. Let these popular pages lead us to the study of nature, and we shall find our labour far from onerous and full of interest, daily increasing to the end, when we shall know no more of earth, or chemistry.

As a preliminary we will put our workshop aside, and show you something of Chemistry without a Laboratory.