Fig. 26.—Lifting a bottle with a single straw.
The centre of gravity of a body is that point in which the sum of the forces of gravity, acting upon all the particles, may be said to be united. We know the attraction of the earth causes bodies to have a property we call Weight. This property of weight presses upon every particle of the body, and acts upon them as parallel forces. For if a stone be broken all the portions will equal the weight of the stone; and if some of them be suspended, it will be seen that they hang parallel to each other, so we may call these weights parallel forces united in the whole stone, and equal to a single resultant. Now, to find the centre of gravity, we must suspend the body, and it will hang in a certain direction. Draw a line from the point of suspension, and suspend the body again: a line drawn from that point of suspension will pass through the same place as the former line did, and so on. That point is the centre of gravity of that suspended body. If the form of it be regular, like a ball or cylinder, the centre of gravity is the same as the mathematically central point. In such forms as pyramids it will be found near the largest mass; viz., at the bases, about one-fourth of the distance between the apex and the centre of gravity of the base.
When the centre of gravity of any body is supported, that body cannot fall. So the well-known leaning towers are perfectly safe, because their lines of direction fall within the bases. The centre of gravity is in the centre of the leaning figure. The line of direction drawn vertically from that point falls within the base; but if the tower were built up higher, so that the centre of gravity were higher, then the structure would fall, because the line of direction would fall without the base.
We see that animals (and men) are continually altering the position of the centre of gravity; for if a man bears a load he will lean forward, and if he takes up a can of water in one hand he will extend the other to preserve his balance or equilibrium.
Fig. 27.—Balancing a weight on a nail and key.
The experiment shown in the accompanying illustration is apparently very difficult, but it will be found easy enough in practice if the hand be steady. Take a key, and by means of a crooked nail, or “holdfast,” attach it to a bar of wood by a string tied tightly round the bar, as in the picture. To the other extremity of the bar attach a weight, and then drive a large-headed nail into the table. It will be found that the key will balance, and even move upon the head of the nail, without falling. The weight is under the table, and the centre of gravity is exactly beneath the point of suspension.
Another simple experiment may prove amusing. Into a piece of wood insert the points of two knives, and at the centre of the end of the bar insert a needle between the knife handles. The wood and the knives may then be balanced on another needle fixed in a cork at A.