Fig. 339.—Preparation of hydrogen with furnace.
Fig. 340.—Apparatus for generating hydrogen by flask.
We can prove by the Eudiometer that hydrogen when burnt with oxygen forms water; and here we must remark that water is not a mere mechanical mixture of gases, as air is. Water is the product of chemical combination, and as we have before said, is really an oxide of hydrogen, and therefore combustion, or electricity, must be called to our assistance before we can form water, which is the result of an explosion, the mixture meeting with an ignited body—the aqueous vapour being expanded by heat.
The ancients supposed water to be a simple body, but Lavoisier and Cavendish demonstrated its true character. Pure water, at ordinary temperatures, is devoid of taste and smell, and is a transparent, nearly colourless, liquid. When viewed in masses it is blue, as visible in a marked degree in the Rhone and Rhine, at Geneva, and Bâle respectively. Its specific gravity is 1, and it is taken as the standard for Sp. Gravity, as hydrogen is taken as the standard for Atomic Weight. The uses of water and the very important part it plays in the arrangements of nature as a mechanical agent, geology can attest, and meteorology confirm. It composes the greater portions of animals and plants; without water the world would be a desert—a dead planet.
Fig. 341.—Blowing bubbles with hydrogen gas.
We sometimes speak of “pure” spring water, but such a fluid absolutely pure can scarcely be obtained; and though we can filter water there will always remain some foreign substance or substances in solution. It is well known that the action of water wears away and rounds off hard rocks, and this power of disintegration is supplemented by its strength as a solvent, which is very great. Rain-water is purest in the country as it falls from the clouds. In smoky towns it becomes sooty and dirty. It is owing to the solvent properties of water, therefore, that we have such difficulty in obtaining a pure supply. There is hard water and soft water. The former is derived from the calcareous formations, and contains lime, like the Kent water. This can be ascertained by noticing the incrustations of the vessels wherein the water is boiled. But water rising from hard rocks, such as granite, can do little to disintegrate them at the moment, and therefore the water rises purer. Springs from a great depth are warm, and are known as “thermal springs”; and when they come in contact with carbonic acid and some salts in their passage to the surface, they are known as “mineral waters.” These waters hold in solution salts of lime and magnesia, or carbonates of soda with those of lime and magnesia; salts of iron, and compounds of iodine and bromine are found in the natural mineral waters also, as well as sulphurous impregnations, instances of which will occur to every reader.