We have carbon in three different and well-known conditions; as the diamond, as graphite, or black-lead, and as charcoal. The properties of the diamond are well known, and we shall, when we get to Crystallography, learn the forms of diamond or crystals of carbon. At present we give an illustration or two, reserving all explanation for the present. Diamond cutting is a matter of some difficulty, and it requires skill to cut in the proper direction. Diamonds are found in India, Brazil, and at the Cape of Good Hope, in alluvial soil. The identity of diamond and charcoal was discovered accidentally. An experiment to fuse a few small diamonds resulted in their disappearance, and when the residue was examined it was found that the diamonds had been burned, that they had combined with oxygen and formed carbonic acid, just as when coal burns. The diamond is the hardest of all substances, the most valuable of gems, and the purest condition in which carbon appears.

Graphite (Plumbago) is termed “black-lead,” and is the next purest form of carbon. It crystallizes and belongs to the primitive formations. In Cumberland it is dug up and used to make pencils; the operations can be seen at Keswick. It has other uses of a domestic character.

Charcoal is the third form of carbon, and as it possesses no definite form, is said to be amorphous. Charcoal is prepared in air-tight ovens, so that no oxygen can enter and burn the wood thus treated. Coke is the result of the same process applied to coal. The gas manufactories are the chief depôts for this article, and it is used in locomotive engines. The various smokeless coals and prepared fuels, however, are frequently substituted.

Fig. 366.—Coke ovens.

Coke ovens were formerly much resorted to by the railway companies, who found the ordinary coal too smoky for locomotive purposes, and apt to give rise to complaints by passengers and residents near the line.

The origin of wood charcoal we have seen. All vegetable substances contain carbon. When we burn wood, in the absence of air as far as possible, oxygen and hydrogen are expelled. The wood is piled in layers as in the illustration (fig. 368), covered over with turf and mould, with occasional apertures for air. This mass is ignited, the oxygen and hydrogen are driven off, and carbon remains. (Animal charcoal is obtained from calcining bones). Wood charcoal attracts vapours, and water, if impure, can be purified by charcoal, and any impure or tainted animal matter can be rendered inoffensive by reason of charcoal absorbing the gases, while the process of decay goes on just the same. Housekeepers should therefore not always decide that meat is good because it is not offensive to the olfactory nerves. Charcoal will remove the aroma, but the meat may be nevertheless bad. The use of charcoal in filters is acknowledged universally, and as a constituent of gunpowder it is important.

Fig. 367.—Charcoal burning.

Carbon is not easily affected by the atmospheric air, or in the earth; so in many instances wood is charred before being driven into the ground; and casks for water are prepared so. Soot is carbon in a pulverised condition, and Indian ink is manufactured with its assistance.