In some countries, as in Saxony and South America, recourse is had to another process, that of amalgamation, which depends on the easy solubility of silver and other metals in mercury. The ore, after being reduced to a fine powder, is mixed with common salt, and roasted at a low red heat, whereby any sulphide of silver the ore may contain is converted into chloride. The mixture is then placed, with some water and iron filings, in a barrel which revolves round its axis, and the whole agitated for some time, during which process the chloride of silver becomes reduced to the metallic state. A portion of mercury is then introduced, and the agitation continued. The mercury combines with the silver, and the amalgam is then separated by washing. It is afterwards pressed in woollen bags to free it from the greater part of the mercury, and then heated, when the last trace of mercury volatilizes and leaves the silver behind.

Nitrate of Silver is obtained when metallic silver is dissolved in nitric acid. It is known popularly as lunar caustic, and forms the base of “marking inks.” Chloride of silver is altered by light, but the iodide of silver is even more rapidly acted on, and is employed in photography. Fulminating silver is oxide of silver digested in ammonia. It is very dangerous in inexperienced hands. It is also prepared by dissolving silver in nitric acid, and adding alcohol. It cools in crystals. Fulminating mercury is prepared in the same way.

Gold is the most valuable of all metals,—the “king of metals,” as it was termed by the ancients. It is always found “native,” frequently with silver and copper. Quartz is the rock wherein it occurs. From the disintegration of these rocks the gold sands of rivers are formed, and separated from the sands by “washing.” In Australia and California “nuggets” are picked up of considerable size.

It is a rather soft metal, and, being likewise costly, is never used in an absolutely pure state. Coins and jewellery are all alloyed with copper and silver to give them the requisite hardness and durability. Gold is extremely ductile, and very malleable. One grain of gold may be drawn into a wire five hundred feet in length, and the metal may be beaten into almost transparent leaves 1/200000 of an inch in thickness!

Fig. 418.—Native gold.

Aqua-regia, a mixture of hydrochloric and nitric acids, is used to dissolve gold, which is solved only by selenic acid, though the free chlorine will dissolve it. Faraday made many experiments as to the relation of gold to light. (See “Phil. Trans.,” 1857, p. 145.) The various uses of gold are so well known that we need not occupy time and space in recording them. Gilding can be accomplished by immersing the articles in a hot solution of chloride of gold and bicarbonate of potash mixed; but the electro process is that now in use, by which the gold precipitates on the article to be plated.

We have already described the process of electro-plating in the case of silvered articles, and we need only mention that electro-gilding is performed very much in the same way. But gilding is also performed in other ways; one of which, the so-called water gilding, is managed as follows. Gilding with the gold-leaf is merely a mechanical operation, but water-gilding is effected by chemistry.

Water-gilding is a process (in which, however, no water is used) for covering the surface of metal with a thin coating of gold; the best metal for water-gilding is either brass, or a mixture of brass and copper. A mixture of gold and mercury, in the proportion of one part of gold to eight of mercury, is made hot over a fire till they have united; it is then put into a bag of chamois-leather, and the superfluous mercury pressed out. What remains is called an “amalgam”; it is soft, and of a greasy nature, so that it can be smeared over any surface with the fingers. The articles to be gilt are made perfectly clean on the surface, and a liquid, made by dissolving mercury in nitric acid (aqua-fortis), is passed over them with a brush made of fine brass wire, called a “scratch-brush.” The mercury immediately adheres to the surface of the metal, making it look like silver; when this is done, a little of the amalgam is rubbed on, and the article evenly covered with it. It is then heated in a charcoal fire till all the mercury evaporates, and the brass is left with a coating of gold, which is very dull, but may be burnished with a steel burnisher and made bright if necessary. In former times articles were inlaid with thin plates of gold, which were placed in hollows made with a graver, and melted in, a little borax being applied between.

When a solution of “chloride of gold” is mixed with ether, the ether takes the gold away from the solution, and may be poured off the top charged with it. This solution, if applied to polished steel by means of a camel-hair pencil, rapidly evaporates, leaving a film of gold adhering to the steel, which, when burnished with any hard substance, has a very elegant appearance. In this way any ornamental design in gold may be produced, but it is not very durable. The gilt ornaments, scrolls, and mottoes on sword-blades, are sometimes done in this way.