The importance of these facts to science is unmistakable, and, indeed, many attempts have been made to explain, from the electrical condition of the elements, the nature of chemical affinity, and of chemical phenomena in general.
Electrotyping is another instance of decomposition by means of electricity, and respecting decomposition by light we know how powerful the action of the sun’s rays are upon plants, and for the evolution of oxygen. The daguerreotype and photographic processes are also instances which we have commented upon. So we can pass directly to the consideration of the compound groups.
In nearly every complex organic compound we have a relatively simple one of great stability, which is termed the radical, which forms, with other bodies, a compound radical.[22] In these complex groups we find certain elements generally,—viz., carbon, hydrogen, nitrogen, sulphur, and phosphorus. Some compounds may consist of two of these, but the majority contain three (hydrogen, oxygen, and carbon). Many have four (carbon, oxygen, hydrogen, and nitrogen), and some more than four, including phosphorus and sulphur. Others, again, may contain chlorine and its relatives, arsenic, etc., in addition. Now we will all admit that in any case in which carbon is present in composition with other simple bodies forming an organic body, and if that body be ignited in the air, it burns and leaves (generally) a black mass. This is a sure test of the presence of carbon, and forms an organic compound. Similarly in decomposition nitrogen and sulphur in combination inform us they are present by the odour they give off. We need not go farther into this question of radicals and compound radicals than to state that a compound radical plays the part of an element in combination. We find in alcohol and ether a certain combination termed Ethyl. This “compound radical” occurs in same proportions in ether, chloride of ethyl, iodide of ethyl, etc., as C2H5; so it really acts as a simple body or element, though it is a compound of carbon and hydrogen. A simple radical is easily understood; it is an element, like potassium, for instance. We may now pass to the organic combinations classified into Acids, Bases, and Indifferent, or Neutral, Bodies.
I. Acids.
There are several well-known organic acids, which we find in fruits and in plants. They are volatile and non-volatile; acids are sometimes known as “Salts of Hydrogen.” We have a number of acids whose names are familiar to us,—viz., acetic, tartaric, citric, malic, oxalic, tannic, formic, lactic, etc.
Acetic acid (HC2H4O2) is a very important one, and is easily found when vegetable juices, which ferment, are exposed to the air, or when wood and other vegetable matter is subjected to the process of “dry distillation.” Vinegar contains acetic acid, which is distilled from wood, as we shall see presently. Vinegar is made abroad by merely permitting wine to get sour; hence the term Vin-aigre. In England vinegar is made from “wort,” of malt which is fermented for a few days, and then put into casks, the bung-holes of which are left open for several weeks, until the contents have become quite sour. The liquid is then cleared by isinglass. The vinegar of commerce contains about 6 per cent. of pure acetic acid, and some spirit, some colouring matter, and, of course, water. Wood vinegar (pyroligneous acid) is used for pickles. The ordinary vinegar when distilled is called white vinegar, and it may also be obtained from fruits, such as gooseberries or raspberries.
Fig. 420.—Vinegar ground.
Fig. 421.—Boiler or copper.