The simple quadrant is shown in the cut (fig. 510). This was so arranged that when any object in the horizon was being looked at through the telescope attached, a plummet line is at 0°. But if the telescope be raised to C S, the quadrant will move, and the line will mark a certain number of degrees of the angle which a line if drawn from the star makes with the line of the horizon. The “Astronomical Quadrants” are as shown in fig. 516, and consist of a quadrant of wood strengthened and fitted with a telescope. The circle is graduated on the outer edge, and a “vernier” is attached. The time is determined by the observation of the altitude of a star, and then by calculation finding out at what time the star would have the observed altitude. The quadrant is now superseded by circular instruments.

Fig. 510.—The quadrant.

Fig. 511.—Ellipse.

An ellipse is a flattened circle, or oval, and will be understood from the diagrams. Let us fix two pegs upon a sheet of paper, and take a thread longer than the distance between the pegs; draw with the pencil controlled by the thread a figure, keeping the thread tight. We shall thus describe an oval, or ellipse. The orbit of nearly all the heavenly bodies is an ellipse. The parabola is another curved line, but its ends never meet; they become more and more distant as they are continued. The comets move in parabolic curves, and consequently do not again come within our vision unless their direction be altered.

Fig. 512.—Ellipse.

Fig. 513.—Diagonal scale.