Before passing to consider the planetary system we must say a few words respecting the manner of ascertaining the distances of inaccessible objects, and by so doing, we shall arrive at an idea how the immense distances between the sun (and the planets) and the earth have been so accurately arrived at. To do this we must speak of parallax, a very unmeaning word to the general reader.

Fig. 522.—Works of a clock.

Parallax is simply the difference between the directions of an object when seen from two different positions. Now we can illustrate this by a very simple method, which we have often tried as a “trick,” but which has been very happily used by Professor Airy to illustrate the doctrine of parallax. We give the extract in his own words:—

“If you place your head in a corner of a room, or on a high-backed chair, and if you close one eye and allow another person to put a lighted candle upon a table, and if you then try to snuff the candle with one eye shut, you will find you cannot do it.... You will hold the snuffers too near or too distant—you cannot form any idea of the distance. But if you open the other eye, or if you move your head sensibly you are enabled to judge of the distance.” The difference of direction between the eyes, which is so well known to all, is ready a parallax. It can also be illustrated by the diagram herewith.

Fig. 523.—Parallax.

If two persons, A and C (fig. 523), from different stations, observe the same point, M, the visual lines naturally meet in the point, M, and form an angle, which is called the angle of parallax. If the eye were at M, this angle would be the angle of vision, or the angle under which the base line, A C, of the two observers appears to the eye. The angle at M also expresses the apparent magnitude of A C when viewed from M, and this apparent magnitude is called the parallax of M.

Let M represent the moon, C the centre of the earth represented by the circle, then A C is the parallax of the moon; that is, the apparent magnitude the semi-diameter of the earth would have if seen from the moon. If the moon be observed at the same time from A, being then on the horizon, and from the point B, being then in the zenith, and the visual line of which when extended passes through the centre of the earth, we obtain, by uniting the points, A C M, by lines, the triangle, A C M.