Fig. 49.—The Barometer.
Fig. 50.—Syphon barometer.
The Syphon Barometer is a bent tube like the one already shown, with one limb much shorter than the other.
The Aneroid Barometer, so called because it is “without moisture,” is now in common use. In these instruments the atmospheric pressure is held in equilibrium by an elastic metal spring or tube. A metal box, or tube, is freed from air, and then hermetically sealed. This box has a flexible side, the elasticity of which, and the pressure of the air on it, keep each other in equilibrium. Upon this elastic side the short arm of a lever is pressed, while the longer arm works an index-point, as in the circular barometer. When pressure increases the elastic box “gives”; when pressure diminishes it returns to its former place, and the index moves in the opposite direction. It is necessary to compare and “set” the aneroid with the mercurial barometer to ensure correctness. A curved tube is sometimes used, which coils and uncoils like a spring, according to the pressure on it.
Fig. 51.—The Water Barometer.
There are other barometers, such as the Water Barometer, which can be fixed against the side of a house, and if the water be coloured, it will prove a useful indicator. As the name indicates, water is used instead of mercury, but as the latter is thirteen-and-half times heavier than water, a much longer tube is necessary; viz., one about thirty-five feet in length. The construction is easy enough. A leaden pipe can be fixed against the house; on the top is a funnel furnished with a stop-cock, and placed in a vase of water. The lower part of the tube is bent, and a glass cylinder attached, with another stop-cock—the glass being about three feet long, and graduated. Fill the tube with water, shut the upper stop-cock, and open the lower one. The vacuum will be formed in the top of the tube, and the barometer will act on a larger scale than the mercury.
The Glycerine Barometer, invented by Mr. Jordan, and in use at the Times office, registers as more than one inch movements which on the mercurial thermometer are only one-tenth of an inch, and so are very distinctly visible. The specific gravity of pure glycerine is less than one-tenth that of mercury, so the mean height of the glycerine column is twenty-seven feet at sea level. The glycerine has, however, a tendency to absorb moisture from the air, but Mr. Jordan, by putting some petroleum oil upon the glycerine, neutralized that tendency, and the atmospheric pressure remains the same. A full description of this instrument was given in the Times of 25th October, 1880.