Fig. 555.—Earth and Sun.

The earth, as we know, proceeds with a tremendous force around the sun, not in a circle, remember, but in an ellipse or oval track, from which it never moves year by year in any appreciable degree. Now what prevents this earth of ours from rushing off by itself into space? Why should not the earth fly away in a direct line? The reason is because the sun holds it back. The force of the sun’s gravitation is just sufficient, or we may say so enormously great, that it suffices to retain our globe and all the other planets in their various orbits at the very same distance, and to counteract the force which launches them through space. Therefore, as we have already noticed when considering the sun, it is to that ruler of the day that we are indebted for everything.

What would happen, then, if the earth were suddenly to increase her velocity, or the sun to contract his mass?—We should be flung into infinite space, and in a short time would be frozen up completely. Our present diurnal course would probably proceed, but all life and existence would cease as we whirled with distant planets through infinity.

Suppose, on the contrary, we were to stop suddenly. We have some of us read in a foregoing part of this volume that heat is the motion of molecules in ether, and that when a body strikes another heat is developed by contact and friction. If the earth were to be stopped suddenly, “an amount of heat would be developed sufficient to raise the temperature of a globe of lead of the same size as the earth 384,000° of the Centigrade thermometer. The greater part, if not the whole of our planet, would be reduced to vapour”, as Professor Tyndall says.

Fig. 556.—Transit of earth across Sun, seen from Mars.

In the diagram (fig. 546, on page 497) we shall at once find the explanation of the constantly-recurring seasons, and the amount of our globe which is illuminated by the sun at various times. It will be easily understood that the poles have six months day and six months night. When the earth is at an equinox, one half of the surface is illuminated and the other half in shade, therefore the days and nights are equal. But when the north pole turns more and more towards the sun, the south pole is turning away from it in the same ratio,—the days and nights respectively are getting longer and longer, and at the north and south poles day and night are continuous, for the small spaces round the poles are, during a certain period, wholly in sunshine and shade respectively.

In March (in the diagram, fig. 546) we see that exactly one half of the earth is illuminated, and the other is darkened. So in September, when we have the opposite view. In June the earth is more inclined apparently to the sun, and more of the surface is exposed to it, so the days are longer in some parts. The opposite effect is visible in December.

The summer heat and winter cold are accounted for by the more or less direct force of the sun’s rays, for the more the angle of incidence is inclined the fewer rays reach the object; and if the rays fall at an angle of 60°, the heat is only half what it would be if they came vertically. When the days are shortest the sun is lowest, and therefore gives less heat to the earth at certain periods.