Fig. 588.—Eclipses of Jupiter’s Moons.

From the observation of the eclipses of Jupiter’s moons the rate of the transmission of light was discovered by Roëmer in 1675, and its progressive motion was calculated. The eclipses were noticed to take place later than the calculated time, when the planet was approaching conjunction. Roëmer suggested that the delay was owing to the greater distance the light had to travel—a distance equal to the diameter of the earth’s orbit, or about 190,000,000 of miles. The time was about sixteen minutes. Light was found to travel at the rate of nearly 12,000,000 of miles a minute.

Let us now endeavour to picture Jupiter himself. Here we have an illustration of the planet. He is the biggest, and the brightest, except Venus, of all the planets. He revolves at a distance of 476,000,000 of miles from the sun, and his year is equal to nearly twelve of ours, while his day is scarcely ten hours long, showing a rapidity more than twenty times the rate of our earth. Jupiter, therefore, must have a very much greater diameter than the earth.

Fig. 589.—Jupiter.

There is much less sunlight and heat found on Jupiter than upon Earth, because he is so much farther from the sun than we are, but at the same time the heat comes at less intervals than with us. And here the theory already noticed respecting the gradual cooling of the planets will be remembered. Jupiter, we can easily imagine, would take much longer to get cool than Mars or the earth, and, though his rapid rotation would assist him, he must be still in the midst of a glowing atmosphere without form and void—perhaps a furnace for cloud and vapour generation.

Now when Jupiter is examined with the telescope it will be seen that he is crossed by belts of vapour (see also page 489); and when we consider the results of the spectrum analysis of the planet, we may fairly assume that Jupiter is in a very heated state, and that we cannot really perceive the actual body of the planet at all yet. There is an immense quantity of water thus surrounding Jupiter, and he is still in the condition in which our earth was before geology grasps its state, and long ere vegetation or life appeared. The waters have yet to be “gathered together into one place,” and the dry land has yet to appear upon Jupiter, who is a very juvenile, if a very enormous planet. Under these conditions we can safely assume that there are no inhabitants of Jupiter.

The belts, or zones, of Jupiter vary in hue, and the continual changes which are taking place in this cloud region tend to show that disturbances of great magnitude and importance are occurring.

It is useless to speculate upon what will happen in Jupiter when the disc is eventually cooled. The planet, we know, has not nearly reached maturity; the earth is in the full prime of its life, and the moon is dead and deserted. What the millions of years which must elapse before Jupiter has cooled may bring forth we need not try to find out. The earth will then, in all probability, be as dreary as the moon is now, and we shall have returned to dust.