Fig. 65 represents a pretty experiment in connection with these phenomena. I take a glass, which I fill up to the brim, taking care that the meniscus be concave, and near it I place a pile of pennies. I then ask my young friends how many pennies can be thrown into the glass without the water overflowing. Everyone who is not familiar with the experiment will answer that it will only be possible to put in one or two, whereas it is possible to put in a considerable number, even ten or twelve. As the pennies are carefully and slowly dropped in, the surface of the liquid will be seen to become more and more convex, and one is surprised to what an extent this convexity increases before the water overflows.

Fig. 66.—The Syphon.

The common syphon may be mentioned here. It consists of a bent tube with limbs of unequal length. We give an illustration of the syphon (fig. 66). The shorter leg being put into the mixture, the air is exhausted from the tube at o, the aperture at g being closed with the finger. When the finger is removed the liquid will run out. If the water were equally high in both legs the pressure of the atmosphere would hold the fluid in equilibrium, but one leg being longer, the column of water in it preponderates, and as it falls, the pressure on the water in the vessel keeps up the supply.

Apropos of the syphon, we may mention a very simple application of the principle. Cut off a strip of cloth, and arrange it so that one end shall remain in a glass of water while the other hangs down, as in the illustration. In a short time the water from the upper glass will have passed through the cloth-fibres to the lower one (fig. 67).

This attribute of porous substances is called capillarity, and shows itself by capillary attraction in very fine pores or tubes. The same phenomenon is exhibited in blotting paper, sugar, wood, sand, and lamp-wicks, all of which give familiar instances of capillarity. The cook makes use of this property by using thin paper to absorb grease from the surface of soups.

Capillarity (referred to on page 25) is the term used to define capillary force, and is derived from the word capillus, a hair; and so very small bore tubes are called capillary tubes. We know that when we plunge a glass tube into water the liquid will rise up in it, and the narrower the tube the higher the water will go; moreover, the water inside will be higher than at the outside. This is in accordance with a well-known law of adhesion, which induces concave or convex surfaces[9] in the liquids in the tubes, according as the tube is wetted with the liquid or not. For instance, water, as we have said, will be higher in the tube, and concave in form; but mercury will be depressed below the outside level, and convex, because mercury will not adhere to glass. When the force of cohesion to the sides of the tube is more than twice as great as the adhesion of the particles of the liquid, it will rise up the sides, and if the forces be reversed, the rounded appearance will follow. This accounts for the convex appearance, or “meniscus,” in the column of mercury in a barometer.

Amongst the complicated experiments to demonstrate molecular attraction, the following is very simple and very pretty:—Take two small balls of cork, and having placed them in a basin half-filled with water, let them come close to each other. When they have approached within a certain distance they will rush together. If you fix one of them on the blade of your penknife, it will attract the other as a magnet, so that you can lead it round the basin (fig. 68). But if the balls of cork are covered with grease they will repel each other, which fact is accounted for by the form of the menisques, which are convex or concave, according as they are moistened, or preserved from action of the water by the grease.

Fig. 67.—An improvised syphon.