The ideal method of blood transfusion seems to me to require that it shall be absolutely certain of success, that the blood shall not necessarily be injected into the patient immediately it has been drawn, so that other circumstances besides the demands of the transfusion operation can be considered, and that no injury shall be done to the donor beyond the puncturing of a vein. In addition to this, the method should be so simple and free from special apparatus that it can be easily learnt and carried out by one operator without skilled assistance. All these requirements are fulfilled by the citrate method, and a satisfactory method of performing this will next be described. As will be seen, the blood can be drawn with the minimum amount of injury to the donor; when drawn, it can be put on one side, for several hours if necessary, and then given to the patient at whatever may be judged to be the most favourable moment; the whole process can be carried out by a single operator without any assistance; and finally, but little practice is needed to make success certain every time.
The transfusion apparatus known as “Robertson’s bottle,” first described by Oswald Robertson in 1918, is the basis of most citrate methods. This could be easily improvised in a field laboratory, and was extensively used during the last year of the war. The apparatus consisted of a glass bottle of about a litre capacity, the mouth of which was closed by a rubber bung. Through the bung three glass tubes passed. One, connected by a short rubber tube with a wide-bore needle, ended about an inch from the bottom of the bottle; through this the blood flowed into the bottle. A second tube, which reached to the angle between the side and the bottom of the bottle, was connected by a rubber tube with a cannula; through this the blood was injected into the patient. The third tube reached only just beyond the bung, and to this was attached a Higginson’s syringe, by means of which either negative or positive pressure would be produced inside the bottle, according to which end of the syringe was attached.
It is unnecessary to describe this apparatus any further, for it was found by myself and others that it could be with advantage modified in the direction of simplicity. It is in the first place unnecessary in drawing the blood to create any negative pressure if a needle of a large enough bore (2 or 3 mm.) be used, and, further, it is an advantage not to have the needle attached in any way to the bottle, which, as the blood flows into it, has to be freely agitated in order to mix the blood quickly with the citrate. The needle may, therefore, be attached to a rubber tube of suitable length which hangs freely into the collecting vessel as shown in the diagram on p. 127. The third tube of “Robertson’s bottle” may be dispensed with by using a conical flask provided with a side tube to which a rubber bellows can be attached. The delivery tube is therefore the only one that need pass through the rubber bung. This tube should have an angle in it inside the flask so that its lower end reaches into the corner, and the extremity should be ground down obliquely so that, although it reaches right into the corner, it does not become occluded by too accurate contact with the surface of the vessel. By this means any wastage of blood is prevented. I have found it a very great convenience to introduce into the delivery tube just outside the flask an air-lock,[8] the value of which will be seen shortly. To the barrel of this air-lock a rubber tube with a cannula is attached. Close to the cannula is some form of clip. The whole apparatus is illustrated in the figure on p. 133, and with the help of this its use may be readily understood.
Fig. 9.—Transfusion Needle
(Actual Size)
The particular form of needle which I have been in the habit of using is shown in the figure. Its lumen has a diameter of 2 mm., and the steel tube ends off flush with the wide shoulder to which the rubber tube is attached. This avoids any recess within the needle in which clotting may begin. The point of the needle should not be too long, in order that it may not wound the opposite side of the vein when it has been introduced. For ease of introduction, however, the extremity should be very sharp and should have cutting edges. The point and edges should be touched up on a bevelled hone each time before the needle is used. The needle should be kept ready for immediate use in liquid paraffin. I have found that the most convenient way of keeping it is to put it into a test-tube containing paraffin, which is plugged with cotton-wool and sterilized at 130° C. in the hot air oven or by careful heating over a flame. In this way the needle may be kept ready for an indefinite time without any chance of its rusting. When it is taken out of the test-tube, a sterile rubber tube is slipped on to it and it is then ready for use. As an additional precaution, a small quantity of paraffin may be drawn up into the rubber tube, which is thus lubricated on the inside, but this is not absolutely necessary. The tube must be sterilized with the rest of the apparatus, as rubber is destroyed by liquid paraffin.
Fig. 10.—Drawing Blood for Transfusion
When the donor’s arm has been congested by gripping it above the elbow, or better by the application of a tourniquet[9] drawn to the requisite degree of tightness, a suitable vein, usually the median basilic, is chosen. The area of puncture is washed with ether and a very small quantity, 2 to 3 minims, of 2 per cent. novocain is introduced over the vein with a hypodermic syringe. If a larger quantity is used, the vein may become obscured, but this small amount may be dispersed by a few moments’ pressure with the finger, and is usually enough to anæsthetize the very small area of skin that is to be operated upon. A tiny cut in the skin is then made with the point of a scalpel, and the needle is pushed through into the vein. If the donor’s vein is a large one, such as is usually found in the type of donor recommended in a previous chapter, this is quite easy to do. To make it equally easy if the vein be smaller, it has been suggested by Watson that the vein may be fixed by pushing an ordinary fine sewing-needle through the skin at right angles to the line of the vein, into the vein, and out again through the skin. This needle is held with the forefinger and thumb of the left hand, while the right hand pushes the transfusion needle into the lumen of the vein just below it. When the needle is in the vein, the blood flows out rapidly through the tube which hangs into the flask containing the citrate, as illustrated. This flask is held by an assistant, who mixes the blood with the citrate by gently swinging it. If a properly adjusted tourniquet is kept on the donor’s arm while he works his forearm muscles by clasping and unclasping his hand, a flow of blood is obtained which is fast enough to prevent clotting in the needle, and indeed is quite as fast as most donors can tolerate. Blood up to 1,000 cc. may be collected in this way in ten to twenty minutes. If the vein be of a good size, it makes no difference whether the needle be inserted towards the heart or away from it. When enough blood has been collected, the tourniquet is removed, the needle is withdrawn, and pressure is maintained with a sterile swab over the site of puncture for a few minutes. No further bleeding will take place after this, and no suture is needed. The donor’s part in the operation is then finished. He should be made to lie on his back for a few hours afterwards, and given plenty of fluids, but beyond this no special precautions are necessary.
When the blood has been drawn, and has been satisfactorily mixed with the citrate, the flask may be put on one side until it is wanted, its mouth having been closed with a cotton-wool stopper. If the blood is wanted at once, the flask may be stood in a basin of warm water to keep it at body temperature. Otherwise it may be allowed to cool, and can be warmed up again when it is to be administered. The citrated blood may be kept for a considerable time without undergoing any appreciable change in its therapeutic value. It has been given twelve hours or more after being taken with the same good effects as if it had been newly drawn. During the war advantage was taken of this fact to anticipate during quiet times the necessity for many transfusions during times of stress. The blood was drawn in some quantity and kept for several hours in an ice chest, so that it was readily available during the expected battle. Recently I have administered to a woman who had been operated upon for a ruptured ectopic gestation 600 cc. of citrated blood which had been kept for twenty-seven hours at room temperature after it was drawn. The effect was in every way as satisfactory as if it had been freshly drawn, and there was no sign of any toxic reaction. So far as I know, blood had not ever been kept so long as this before being used, but there does not seem to be any objection to so doing.