On this part of the lever stands and is fixed a box three and a half feet long, one foot and one palm wide, and half a foot deep; but these measurements vary; sometimes the bottom of this box is narrower, sometimes equal in width to the top. In either case, it is filled with stones and earth to make it heavy, but the smelters have to be on their guard and make provision against the stones falling out, owing to the constant motion; this is prevented by means of an iron band which is placed over the top, both ends being wedge-shaped and driven into the lever so that the stones can be held in. Some people, in place of the box, drive four or more pegs into the lever and put mud between them, the required amount being added to the weight or taken away from it.
There remains to be considered the method of using this machine. The lower lever, being depressed by the cams, compresses the bellows, and the compression drives the air through the nozzle. Then the weight of the box on the other end of the upper lever raises the upper bellows-board, and the air is drawn in, entering through the air-hole.
There is a toothed wheel, two palms and a digit thick, on the end of another axle; this wheel is composed of a double disc[8]. The inner disc is composed of four segments a palm thick, everywhere two palms and a digit wide. The outer disc, like the inner, is made of four segments, and is a palm and a digit thick; it is not equally wide, but where the head of the spokes are inserted it is a foot and a palm and digit wide, while on each side of the spokes it becomes a little narrower, until the narrowest part is only two palms and the same number of digits wide. The outer segments are joined to the inner ones in such a manner that, on the one hand, an outer segment ends in the middle of an inner one, and, on the other hand, the ends of the inner segments are joined in the middle of the outer ones; there is no doubt that by this kind of joining the wheel is made stronger. The outer segments are fastened to the inner by means of a large number of wooden pegs. Each segment, measured over its round back, is four feet and three palms long. There are four spokes, each two palms wide and a palm and a digit thick; their length, excluding the tenons, being two feet and three digits. One end of the spoke is mortised into the axle, where it is firmly fastened with pegs; the wide part of the other end, in the shape of a triangle, is mortised into the outer segment opposite it, keeping the shape of the same as far as the segment ascends. They also are joined together with wooden pegs glued in, and these pegs are driven into the spokes under the inner disc. The parts of the spokes in the shape of the triangle are on the inside; the outer part is simple. This triangle has two sides equal, the erect ones as is evident, which are a palm long; the lower side is not of the same length, but is five digits long, and a mortise of the same shape is cut out of the segments. The wheel has sixty teeth, since it is necessary that the rundle drum should revolve twice while the toothed wheel revolves once. The teeth are a foot long, and project one palm from the inner disc of the wheel, and three digits from the outer disc; they are a palm wide and two and a half digits thick, and it is necessary that they should be three digits apart, as were the rundles.
The axle should have a thickness in proportion to the spokes and the segments. As it has two cams to depress each of the levers, it is necessary that it should have twenty-four cams, which project beyond it a foot and a palm and a digit. The cams are of almost semicircular shape, of which the widest part is three palms and a digit wide, and they are a palm thick; they are distributed according to the four sides of the axle, on the upper, the lower and the two lateral sides. The axle has twelve holes, of which the first penetrates through from the upper side to the lower, the second from one lateral side to the other; the first hole is four feet two palms distant from the second; each alternate one of these holes is made in the same direction, and they are arranged at equal intervals. Each single cam must be opposite another; the first is inserted into the upper part of the first hole, the second into the lower part of the same hole, and so fixed by pegs that they do not fall out; the third cam is inserted into that part of the second hole which is on the right side, and the fourth into that part on the left. In like manner all the cams are inserted into the consecutive holes, for which reason it happens that the cams depress the levers of the bellows in rotation. Finally we must not omit to state that this is only one of many such axles having cams and a water-wheel.
I have arrived thus far with many words, and yet it is not unreasonable that I have in this place pursued the subject minutely, since the smelting of all the metals, to which I am about to proceed, could not be undertaken without it.
The ores of gold, silver, copper, and lead, are smelted in a furnace by four different methods. The first method is for the rich ores of gold or silver, the second for the mediocre ores, the third for the poor ores, and the fourth method is for those ores which contain copper or lead, whether they contain precious metals or are wanting in them. The smelting of the first ores is performed in the furnace of which the tap-hole is intermittently closed; the other three ores are melted in furnaces of which the tap-holes are always open.