Here then we meet, in the first place, that continual extrusion of quantity, and especially of number, beyond itself, which Kant describes as 'eery.' The only really 'eery' thing about it is the wearisomeness of ever fixing, and anon unfixing a limit, without advancing a single step. The same poet however well adds to that description of false infinity the closing line:

Ich zieh sie ab, und Du liegst ganz vor mir.

[These I remove, and Thou liest all before me.]

Which means, that the true infinite is more than a mere world beyond the finite, and that we, in order to become conscious of it, must renounce that progressus in infinitum.

(3) Pythagoras, as is well known, philosophised in numbers, and conceived number as the fundamental principle of things. To the ordinary mind this view must at first glance seem an utter paradox, perhaps a mere craze. What, then, are we to think of it? To answer this question, we must, in the first place, remember that the problem of philosophy consists in tracing back things to thoughts, and, of course, to definite thoughts. Now, number is undoubtedly a thought: it is the thought nearest the sensible, or, more precisely expressed, it is the thought of the sensible itself, if we take the sensible to mean what is many, and in reciprocal exclusion. The attempt to apprehend the universe as number is therefore the first step to metaphysics. In the history of philosophy, Pythagoras, as we know, stands between the Ionian philosophers and the Eleatics. While the former, as Aristotle says, never get beyond viewing the essence of things as material (ὕλη), and the latter, especially Parmenides, advanced as far as pure thought, in the shape of Being, the principle of the Pythagorean philosophy forms, as it were, the bridge from the sensible to the super-sensible.

We may gather from this, what is to be said of those who suppose that Pythagoras undoubtedly went too far, when he conceived the essence of things as mere number. It is true, they admit, that we can number things; but, they contend, things are far more than mere numbers. But in what respect are they more? The ordinary sensuous consciousness, from its own point of view, would not hesitate to answer the question by handing us over to sensuous perception, and remarking, that things are not merely numerable, but also visible, odorous, palpable, &c. In the phrase of modern times, the fault of Pythagoras would be described as an excess of idealism. As may be gathered from what has been said on the historical position of the Pythagorean school, the real state of the case is quite the reverse. Let it be conceded that things are more than numbers; but the meaning of that admission must be that the bare thought of number is still insufficient to enunciate the definite notion or essence of things. Instead, then, of saying that Pythagoras went too far with his philosophy of number, it would be nearer the truth to say that he did not go far enough; and in fact the Eleatics were the first to take the further step to pure thought.

Besides, even if there are not things, there are states of things, and phenomena of nature altogether, the character of which mainly rests on definite numbers and proportions. This is especially the case with the difference of tones and their harmonic concord, which, according to a well-known tradition, first suggested to Pythagoras to conceive the essence of things as number. Though it is unquestionably important to science to trace back these phenomena to the definite numbers on which they are based, it is wholly inadmissible to view the characterisation by thought as a whole, as merely numerical. We may certainly feel ourselves prompted to associate the most general characteristics of thought with the first numbers: saying, 1 is the simple and immediate; 2 is difference and mediation; and 3 the unity of both of these. Such associations however are purely external: there is nothing in the mere numbers to make them express these definite thoughts. With every step in this method, the more arbitrary grows the association of definite numbers with definite thoughts. Thus, we may view 4 as the unity of 1 and 3, and of the thoughts associated with them, but 4 is just as much the double of 2; similarly 9 is not merely the square of 3, but also the sum of 8 and I, of 7 and 2, and so on. To attach, as do some secret societies of modern times, importance to all sorts of numbers and figures, is to some extent an innocent amusement, but it is also a sign of deficiency of intellectual resource. These numbers, it is said, conceal a profound meaning, and suggest a deal to think about. But the point in philosophy is, not what you may think, but what you do think: and the genuine air of thought is to be sought in thought itself, and not in arbitrarily selected symbols.

105.] That the Quantum in its independent character is external to itself, is what constitutes its quality. In that externality it is itself and referred connectively to itself. There is a union in it of externality, i.e. the quantitative, and of independency (Being-for-self),—the qualitative. The Quantum when explicitly put thus in its own self, is the Quantitative Ratio, a mode of being which, while, in its Exponent, it is an immediate quantum, is also mediation, viz. the reference of some one quantum to another, forming the two sides of the ratio. But the two quanta are not reckoned at their immediate value: their value is only in this relation.

The quantitative infinite progression appears at first as a continual extrusion of number beyond itself. On looking closer, it is, however, apparent that in this progression quantity returns to itself: for the meaning of this progression, so far as thought goes, is the fact that number is determined by number. And this gives the quantitative ratio. Take, for example, the ratio 2:4. Here we have two magnitudes (not counted in their several immediate values) in which we are only concerned with their mutual relations. This relation of the two terms (the exponent of the ratio) is itself a magnitude, distinguished from the related magnitudes by this, that a change in it is followed by a change of the ratio, whereas the ratio is unaffected by the change of both its sides, and remains the same so long as the exponent is not changed. Consequently, in place of 2:4, we can put 3:6 without changing the ratio; as the exponent 2 remains the same in both cases.