As soon as the moth acquires sufficient strength to break the bonds which surround it, and of which it is informed by its internal sensations, it makes a powerful effort to escape from its prison, and view the world with new-formed eyes. The moth frees itself from the pupa with much greater ease than the pupa from the caterpillar; for the case of the pupa becomes so dry, when the moth is near the time of throwing off its covering, that it will break to pieces if it be only gently pressed between the fingers; and very few of the parts will be found, on examination, to adhere to the body. Hence, when the insect has acquired a proper degree of solidity, it does not require any great exertion to split the membrane which covers it. A small degree of motion, or a little inflation of the body, is sufficient for this purpose; these motions reiterated a few times, enlarge the hole, and afford the moth room to escape from its confinement. The opening through which they pass is always at the same part of the skin, a little above the trunk, between the wings, and a small piece which covers the head; the different fissures are generally made in the same direction. If the outer case be opened, it is easy to discover the efforts the insect makes to emancipate itself from its shell; when the operation begins, there seems to be a violent agitation in the humours contained in the little animal; the fluids seem to be driven with rapidity through all the vessels, and it is seen to agitate its legs, &c. as it were struggling to get free; these efforts soon break its brittle skin. The loosening the exterior bands of the pupa is not the only difficulty many moths have to encounter with; it has often also to pierce the cone or case in which it has been inclosed, and that at a time when its members are very feeble, when it is no longer furnished with strong jaws to pierce and cut its way through; but by the regular laws of divine order, means are furnished to every creature of attaining the end for which it was produced: thus, in the present case, some of these insects are provided with a liquor with which they soften and weaken the end of the cone; some leave one end feeble, and close it only with a few threads, so that a slight effort of the head enables the moth to burst the prison doors, and immerge into day.

When the moth first sees the day, it is humid and moist; but this humidity soon evaporates, the interior parts dry and harden as well as the exterior; the wings, which are wrinkled, being thick and small, then extend themselves, strengthen and harden insensibly, and the fibres which were at first flexible, become hard and stiff; so much so, that Malpighi considered them as bones: in proportion as these fibres harden, the fluid which circulates within them, and extends the wings, loses its force; so that if any extraneous circumstance prevent the motion of this fluid, at the first instant of the moth’s escape from its former state, the wings will then become ill-shaped; often expanding with such rapidity, that the naked eye cannot trace their unfolding. The wings, which were scarce half the length of the body, acquire in a few minutes their full size, so as to be nearly five times as large as they were before: nor is it the wings only which are thus increased; all their spots and colours, heretofore so minute as to be scarce discernible, are proportionably extended, so that what before appeared as only so many unmeaning and confused points, become distinct and beautiful ornaments; and those that are furnished with a tongue or trunk, curl and coil it up. When the wings are unfolded, the tongue rolled up, the moth sufficiently dried, and the different members strengthened, it takes its flight. Most of them, soon after they have attained their perfect state, void an excrementitious substance; Reaumur thinks that they eject very little, if any, during the rest of their lives.

In the progress of these insects, such changes take place, as we could have formed no conception of, if the great Author of these wonders had not been pleased to reward the industrious naturalist with the discovery.

If the moth be opened down the belly, and the unctuous parts which fill it, be removed, the gross artery, which has been called the heart, will be visible, and the contractions and dilatations, by which it pushes forward the liquor it contains, may be easily observed. One of the most remarkable circumstances is, that the circulation of this fluid in the moth is directly contrary to that which took place in the caterpillar; in this, the liquor moved from the tail to the head, whereas in the moth, it moves from the head to the tail; so that the fluid which answers the purposes of the blood in the moth, goes from the superior, towards the inferior parts, but in the voracious sensual caterpillar, the order is inverted, it proceeds from the inferior towards the superior parts; all its members, formerly soft, inactive, and folded up under an envelope, are expanded, strengthened, and exposed to observation.

The food of the caterpillar is gross and solid, and even this it is obliged to earn with much labour and danger; but, when freed as it were from the jaws of death, and arrived at its perfect form, the purest nectar is its potion, and the air its element. It was supplied with coarse food, in the first state, by the painful operation of its teeth, which was afterwards digested by a violent trituration of the stomach. The intestines are now formed in a more delicate manner, and suited to a more pure and elegant aliment, which nature has prepared for its use from the most fragrant and beautiful flowers. Many internal parts of the caterpillar disappear in the chrysalis, and many that could not be perceived before, are now rendered visible: the interior changes are not less surprizing than those of the exterior form, and are, properly speaking, creative of them; for it is from these the exterior form originates, and with these it always corresponds. In a word, the creature that heretofore crept upon the earth, now flies freely through the air; and far from creating our aversion by its frightful prickles and foul appearance, it attracts our notice by the most elegant shape and apparel, and, from being scarce able to move from one shrub to another, acquires strength and agility to tower far above the tallest inhabitant of the forest.

OF THE SILK-WORM.

The industry of those that spin cones or cases, in which they inclose themselves, in order to prepare for their transformation in security, is more generally known, as it is from one species of these that we derive so many benefits, namely from the silk-worm, whose works afford an ornament for greatness, and add magnificence to royalty. All caterpillars undergo similar changes with it, and many in the butterfly state greatly exceed it in beauty: but the golden tissue, in which the silk-worm wraps itself, far surpasses the silky threads of all the other kinds; they may indeed come forth with a variety of colours, and wings bedecked with gold and scarlet, yet they are but the beings of a summer’s day; both their life and beauty quickly vanish, and leave no remembrance after them; but the silk-worm leaves behind it such beneficial monuments, as at once record the wisdom of its Creator, and his bounty to man.[70]

[70] Pullein on the Culture of Silk.

The substance of which the silk is formed, is a fine yellow transparent gum, contained in two reservoirs that wind about the intestines, and which, when they are unfolded, are about ten inches long; they terminate in two exceeding small orifices near the mouth, through which the silk is drawn, or spun to the degree of fineness which its occasions may require. This apparatus has been compared to the instrument used by wire-drawers, and by which gold and silver is drawn to any degree of minuteness. From each of these reservoirs proceeds a thread, which are united afterwards; so that if it be examined by the microscope, it will be found to consist of two cylinders or threads glued together, with a groove in the middle; a separation may sometimes be perceived.

When the silk-worm has found a convenient situation, it sets to work, first spinning some random threads, which serve to support the future superstructure; upon these it forms an oval of a loose texture, consisting of what is called the floss-silk; within this it forms a firm and more consistent ball of silk, remaining during the whole business within the circumference of the spheroid that it is forming, resting on its hinder parts, and with its mouth and fore legs directing and fastening the threads. These threads are not directed in a regular circular form, but are spun in different spots, in an infinite number of zig-zag lines; so that when it is wound off, it proceeds in a very irregular manner, sometimes from one side of the cone, then from the other. This thread, when measured, has been found to be about three-hundred yards long, and so fine, that eight or ten are generally rolled off into one by the manufacturers. The silk-worm usually employs about three days in finishing this cone; the inside is generally smeared with a kind of gum, that is designed to keep out the rain: in this cone it assumes the pupa form, and remains therein from fifteen to thirty days, according to the warmth of the climate. When the moth is formed, it moistens the end of this cone, and by frequent motions of the head loosens the texture of the silk, so as to form a hole without breaking it.