From this period, to the year 1736, the microscope appears not to have received any considerable alteration, but the science itself to have been at a stand. The improvements which were making in the reflecting telescope, naturally led those who had considered the subject, to expect a similar advantage would accrue to microscopes on the same principles: accordingly we find two plans of this kind; the first was that of Dr. Robert Barker. This instrument is entirely the same as the reflecting telescope, excepting the distance of the two speculums, which is lengthened, in order to adapt it to those pencils of rays which enter the telescope diverging; whereas, from very distant objects, they come in a direction nearly parallel. But this was soon laid aside, not only as it was more difficult to manage, but also because it was unfit for any but very small or transparent objects: for the object being between the speculum and the image, would, if it were large and opake, prevent a due reflection of light on the object.

The second was contrived by Dr. Smith.[16] In this there were two reflecting mirrors, one concave and the other convex; the image was viewed by a lens. This microscope, though far from being executed in the best manner, performed, says Dr. Smith, very well, so that he did not doubt but that it would have excelled others, if it had been properly finished.

[16] Dr. Smith’s Optics, Remarks, p. 94.

As some years are more favourable to the fruits of the earth, so also some periods are more favourable to particular sciences, being rich in discovery, and cultivated with ardor. Thus, in the year 1738, Dr. Lieberkühn’s invention of the solar microscope was communicated to the public: the vast magnifying power which was obtained by this instrument, the colossal grandeur with which it exhibited the minima of nature, the pleasure which arose from being able to display the same object to a number of observers at the same time, by affording a new source of rational amusement, increased the number of microscopic observers, who were further stimulated to the same pursuits by Mr. Trembley’s famous discovery of the polype: the wonderful properties of this little animal, together with the works of Mr. Trembley, Baker, and my father, revived the reputation of this instrument.[17]

[17] Trembley Memoires sur les Polypes. Baker’s Microscope made Easy; Attempt towards an History of the Polype; Employment for the Microscope. Adams’s Micrographia Illustrata. Joblot’s Observations d’Histoire Naturelle.

Every optician now exercised his talents in improving, as he called it, the microscope; in other words, in varying its construction, and rendering it different from that sold by his neighbour. Their principal object seemed to be, only to subdivide the instrument, and make it lie in as small a compass as possible; by which means, they not only rendered it complex and troublesome in use, but lost sight also of the extensive field, great light, and other excellent properties of the more ancient instruments; and, in some measure, shut themselves out from further improvements on the microscope. Every mechanical instrument is susceptible of almost infinite combinations and changes, which are attended with their relative advantages and disadvantages: thus, what is gained in power, is lost in time; “he that loves to be confined to a small house, must lose the benefit of air and exercise.”

The microscope, nearly at the same period, gave rise to M. Buffon’s famous system of organic molecules, and M. Needham’s incomprehensible ideas concerning a vegetable force and the vitality of matter. M. Buffon has dressed up his system with all the charms of eloquence, presenting it to the mind in the most agreeable and lively colours, exerting the depths of erudition in the most interesting and seducing manner to establish his hypothesis, making us almost ready to adopt it against the dictates of reason, and the evidence of facts. But whether this great man was misled by the warmth of his imagination, his attachment to a favourite system, or the use of imperfect instruments, it appears but too evident, that he was not acquainted with the objects whose nature he attempted to investigate; and it is probable, that he never saw[18] those which he supposed he was describing, continually confounding the animalculæ produced from the putrifying decomposition of animal substances, with the spermatic animalculæ, although they are two kinds of beings, differing in form and nature; so that the beautiful fabric attempted to be raised on his hypothesis, vanishes before the light of truth and well conducted experiments.

[18] Porro Buffonius, ut cum illustris viri venia dicam, omnino non videtur vermiculos seminales vidisse. Diuturnitas enim vitæ quam suis corpusculis tribuit, ostendit non esse nostra animalcula (id est, spermatica) quibus brevis et paucarum horarum vita est. Haller Physiol. tom. 7.

After this period, the mind, either satisfied with the discoveries already made, which will be particularly described hereafter, or tired by its own exertions, sought for repose in other pursuits; so that for several years this instrument was again, in some measure, laid aside. In 1770, Dr. Hill[19] published a treatise, in which he endeavoured to explain the construction of timber by the microscope, and shew the number, the nature, and office of its several parts, their various arrangements and proportions in the different kinds; and point out a way of judging, from the structure of trees, the uses they will best serve in the affairs of life. So important a subject soon revived the ardor for microscopic pursuits, which seems to have been increasing ever since. About the same time, my father contrived an instrument for cutting the transverse sections of wood, in order that the texture thereof might be rendered more visible in the microscope, and consequently be better understood; this instrument was afterwards improved by Mr. Cumming. Another instrument for the same purpose, more certain in its effects, and more easily managed, is represented in Fig. 1. [Plate IX]; and will be described in one of the following chapters. Dr. Hill and Mr. Custance now endeavoured to bring back the microscope nearer to the old standard, to increase the field by the multiplication of the eye glasses, and to augment the light on the object, by condensing lenses; and in this they happily succeeded: Mr. Custance was unrivalled in his dexterity in preparing, and accuracy in cutting thin transverse sections of wood.

[19] Dr. Hill on the Construction of Timber.