[23] Stillingfleet’s Miscellaneous Tracts.


CHAP. II.
OF VISION; OF THE OPTICAL EFFECT OF MICROSCOPES, AND OF THE MANNER OF ESTIMATING THEIR MAGNIFYING POWERS.

The progress that has been made in the science of optics, in the last and present century, particularly by Sir Isaac Newton, may with propriety be ranked among the greatest acquisitions of human knowledge. And Mess. Delaval and Herschel have shewn by their discoveries, that the boundaries of this science may be considerably enlarged.

The rays of light, which minister to the sense of sight, are the most wonderful and astonishing part of the inanimate creation; of which we shall soon be convinced, if we consider their extreme minuteness, their inconceivable velocity, the regular variety of colours they exhibit, the invariable laws according to which they are acted upon by other substances, in their reflections, inflections, and refractions, without the least change of their original properties; and the facility with which they pervade bodies of the greatest density and closest texture, without resistance, without crouding or disturbing each other. These, I believe, will be deemed sufficient proofs of the wonderful nature of these rays; without adding, that it is by a peculiar modification of them, that we are indebted for the advantages obtained by the microscope.

The science of optics, which explains and treats of many of the properties of those rays of light, is deduced from experiments, on which all philosophers are agreed. It is impossible to give an adequate idea of the nature of vision, without a knowledge of these experiments, and the mathematical reasoning grounded upon them; but as to do this would alone fill a large volume, I shall only endeavour to render some of the more general principles clear, that the reader, who is unacquainted with the science of optics, may nevertheless be enabled to comprehend the nature of vision by the microscope. Some of the most important of these principles may be deduced from the following very interesting experiment.

Darken a room, and let the light be admitted therein only by a small hole; then, if the weather be fine, you will see on the wall, which is facing the hole, a picture of all those exterior objects which are opposite thereto, with all their colours, though these will be but faintly seen. The image of the objects that are stationary, as trees, houses, &c. will appear fixed; while the images of those that are in motion, will be seen to move. The image of every object will appear inverted, because the rays cross each other in passing through the small hole. If the sun shine on the hole, we shall see a luminous ray proceed in a strait line, and terminate on the wall. If the eye be placed in this ray, it will be in a right line with the hole and the sun: it is the same with every other object which is painted on the wall. The images of the objects exhibited on the same plane, are smaller in proportion as the objects are further from the hole.

Many and important are the inferences which may be deduced from the foregoing experiment, among which are the following:

1. That light flows in a right line.

2. That a luminous point may be seen from all those places to which a strait line can be drawn from the point, without meeting with any obstacle; and consequently,