4. A PLANO CONVEX, flat on one side, and convex on the other. A, Fig. 13. [Plate I.]

5. A PLANO CONCAVE, flat on one side, and concave on the other. C, Fig. 13. [Plate I.]

6. A MENISCUS, convex on one side, concave on the other. E, Fig. 13. [Plate I.]

It has been already observed, that light proceeds invariably from a luminous body, in strait lines, without the least deviation; but if it happen to pass from one medium to another, it always leaves the direction it had before, and assumes a new one. After having taken this new direction, it proceeds in a strait line, till it meets with a different medium, which again turns it out of its course.

A ray of light passing obliquely through a plane glass, will go out in the same direction it entered, though not precisely in the same line. The ray C D, Fig. 4. [Plate I.] falling obliquely upon the surface of the plane glass A B, will be refracted towards the glass in the direction D E; but when it comes to E, it will be as much refracted the contrary way. If the ray of light had fallen perpendicularly on the surface of the plane glass, it would have passed through it in a strait line, and not have been refracted at all.

If parallel rays of light, as a b c d e f g, Fig. 6. [Plate I.] fall directly upon a convex lens A B, they will be so bent, as to unite in a point C behind it. For the ray d D which falls perpendicularly upon the middle of the glass, will go through it without suffering any refraction: but those which go through the sides of the lens, falling obliquely on its surface, will be so bent, as to meet the central ray at C. The further the ray a is from the axis of the lens, the more obliquely it will fall upon it. The rays a b c d e f g will be so refracted, as to meet or be collected in the point C, called the principal focus, whose distance, in a double convex lens, is equal to the radius or semi-diameter of the sphere of the convexity of the lens. All the rays cross the middle ray at C, and then diverge from it to the contrary side, in the same manner as they were before converged.

If another lens, of the same convexity, as A B, Fig. 6. [Plate I.] be placed in the rays, and at the same distance from the focus, it will refract them, so that after going out of it, they will all be parallel again, and go on in the same manner as they came to the first glass A B, but on the contrary sides of the middle ray.

The rays diverge from any radiant point, as from a principal focus: therefore, if a candle be placed at C, in the focus of the convex lens A B, Fig. 6. [Plate I.] the rays diverging from it will be so refracted by the lens, that after going out of it, they will become parallel. If the candle be placed nearer the lens than its focal distance, the rays will diverge more or less, as the candle is more or less distant from the focus.

If any object, A B, Fig. 7. [Plate I.] be placed beyond the focus of the convex lens E F, some of the rays which flow from every point of the object, on the side next the glass, will fall upon it, and after passing through it, they will be converged into as many points on the opposite side of the glass; for the rays a b, which flow from the point A, will converge into a b, and meet at C. The rays c d, flowing from the point G, will be converged into c d, and meet at g; and the rays which flow from B, will meet each other again at D; and so of the rays which flow from any of the intermediate points: for there will be as many focal points formed, as there are radiant points in the object, and consequently they will depict on a sheet of paper, or any other light-coloured body, placed at D g C, an inverted image of the object. If the object be brought nearer the lens, the picture will be formed further off. If it be placed at the principal focus, the rays will go out parallel, and consequently form no picture behind the glass.

To render this still plainer, let us divest what has been said of the A’s and B’s, and of the references to figures. When objects are viewed through a flat or plane glass, the rays of light in passing through it, from the object to the eye, proceed in a strait direction and parallel to each other, and consequently the object appeared at the same distance as to the naked eye, neither enlarged or diminished. But if the glass be of a convex form, the rays of light change their direction in passing through the glass, and incline from the circumference towards the center of convexity, in an angle proportional to the convexity, and meet at a point at a less or greater distance from the glass, as it is more or less convex. The point where the rays thus meet is called the focus; when, therefore, the convexity is small, the focus is at a great distance, but when it is considerable, the focus is near; the magnifying power is in proportion to the change made in the rays, or the degree of convexity, by which we are enabled to see an object nearer than we otherwise could; and the nearer it is brought to the eye, the larger will be the angle under which it appears, and consequently the more it will be magnified.