To view transparent objects, remove the opake box, and insert the tube, Y, of Fig. 2, in its place; put the slider, Fig. 3, into its place at n, a condenser, Fig. 4, at h, and the slider with the objects between the plates at m; then adjust the mirror, N O P, as before directed, by the screws, Q, R, so that the light may pass through the object; regulate the focus of the magnifier by the pinion, O. The most pleasing magnifiers in use are the fourth and fifth. The size of the object is generally from four to eight feet, and may be increased or diminished by altering the distance of the screen from the microscope; five or six feet is a convenient distance.

The effect by this sort of microscope is stupendous, and never fails to excite wonder in an observer at the first view, in seeing a flea, &c. augmented in appearance to SEVEN, EIGHT, or even TEN FEET in length, with all its colours, motions, and animal functions, distinctly and beautifully exhibited.

To examine transparent objects of a larger size, or to render the instrument what is usually called a megalascope, take out the slider, Fig. 3, from its place at n; screw the cell and lens, Fig. 6, into the hole at P, Fig. 2; remove the glass which is placed at h, and regulate the light and focus agreeable to the foregoing directions.

At C D, is placed a lens for increasing the density of the rays, for the purpose of burning or melting any fusible substance; this lens must be removed in most cases, lest the objects should be burnt. The intensity of the light is also varied by moving the tube G, and Fig. 2, Y, inwards or outwards.

DESCRIPTION OF THE TRANSPARENT SOLAR MICROSCOPE AND APPARATUS. [Plate VI.] Fig. 4, to 14.

The foregoing description will, in great part, answer for this microscope; but, the dimensions, apparatus, &c. varying in a small degree from the preceding, a distinct description here, may be acceptable to those, who possess this sort of microscope only.

A B C D, Fig. 4, represents the body of the microscope, consisting of two brass tubes. E F is the end of the inner moveable tube; e f, that of the single tooth and pinion microscope. Fig. 5, screws into the end of this inner tube; at the end, A B, of the external tube there is a convex lens, to receive the sun’s rays from the mirror, K L, and to condense them on the object; the end, A B, screws into the circular plate, G H I. This part may also be used as a single microscope, and may have at m the handle, c, screwed to it. K L, a long frame fixed to the moveable circular plate, with a plane mirror, to reflect the rays of the sun on the lens at A B. An endless worm or screw, which is cut on the lower part of the nut, M, works in a small wheel which is fixed to the frame, K L, so that by turning the nut, the frame, K L, is moved up or down: the nut, N, moves the mirror to the right or left. O, P, two screws to fasten the square plate to the window-shutter.

Fig. 5, the single microscope; e f, the end which screws on to the part, E F, Fig. 4, of the internal tube of the body; q, the dove-tailed slit for receiving the slider, Fig. 8; g, the hole in which the megalascope magnifier, Fig. 6, is to be screwed, when the slider, Fig. 8, is removed. At h, are the moveable plates, between which the object sliders are placed; under the lowermost of these, the lens represented at Fig. 11 is to be placed, when the magnifiers in the slider, Fig. 8, are to be used, a k is a small piece of rack-work, which is moved backwards and forwards by the pinion fixed to the milled nut, b; by the gradual motion of this rack, the objects are adjusted to the foci of the different lenses. Fig. 8 is a brass slider, with six lenses, or magnifying glasses; it is to be inserted into the hole at q; either of the magnifiers may be placed before the object, by sliding it one way or the other: you may perceive when the glass is in the center of the eye-hole by a small spring acting upon a notch which is made on the side of the slider opposite to each lens.

APPARATUS BELONGING TO THIS SOLAR MICROSCOPE.

Square plate and mirror. The body, A D, consisting of two tubes, one within the other. The single microscope, Fig. 5. The megalascope lens, Fig. 6. The slider, Fig. 8, with six lenses. The two screws O, P. Six ivory sliders and a talc box, Fig. 7 and 13. Some glass tubes, Fig. 9. A slider or brass case, Fig. 10, containing a plane piece of glass, and a brass slider with holes, into which are cemented small concave glasses, designed for confining minute insects between the plane and concave glasses, which are thus preserved from being crushed, or from moving out of the field of view. Three condensing lenses to enlarge the field of view, such as Fig. 11, that are fitted to the hole, l, of Fig. 5. Their numbers correspond with the numbers used. Fig. 12, two brass nuts for the window-shutter or board, to receive the two screws, O and P.