[63] Butterflies are distinguished from moths by the time of their flying abroad, and by their antennæ; the butterflies appear by day, their antennæ are generally terminated by a little knob; the moths fly mostly in the evening, and their antennæ are either setaceous or pectinated.
The greater part of those insects which come forth in spring or summer, perish or disappear at the approach of winter; there are very few, the period of whose life exceeds that of a year; some survive the rigours of winter, being concealed and buried under ground; many are hid in the bark of trees, and others in the chinks of old walls; some, like the caterpillar of the brown-tailed moth,[64] at the approach of winter not only secure and strengthen the web in which the society inhabit, and thus protect themselves from impertinent intruders, but each individual also spins a case for itself, where it rests in torpid security, notwithstanding the inclemency of the season, till the spring animates it afresh, and informs it, that the all-bountiful Author of nature has provided food convenient for it. Many that are hatched in the autumn retire and live under the earth during the winter months, but in the spring come out, feed, and proceed onward to their several changes; while no small part pass the colder months in their chrysalis or pupa state: but the greater number of the caterpillar race remain in the egg, being carefully deposited by the parent fly in those places where they will be hatched with the greatest safety and success; in this state the latent principle of life is preserved till the genial influences of the spring call it into action, and bring forth the young insect to share the banquet that nature has provided.
[64] This moth was uncommonly numerous and destructive near London in the year 1782, and, aided by the predictions of an empirical imposter, occasioned a considerable alarm in the minds of the ignorant and superstitious. The judicious publication of a short history of the insect, by Mr. Curtis, in some measure contributed to dissipate their fears. Edit.
All caterpillars are hatched from the egg, and when they first proceed from it are generally small and feeble, but grow in strength as they increase in size. The body is divided into twelve rings; the head is connected with the first, and is hard and crustaceous. No caterpillar of the moth or butterfly has less than eight, or more than sixteen feet; the six first are crustaceous, pointed, and fixed to the three first rings of the body; these feet are the covering to the six future feet of the moth; the other six feet are soft and flexible or membranaceous; they vary both in figure and number, and are proper only to the larva state; with respect to their external figure, they are either smooth or hairy, soft to the touch, or hard like shagreen, beautifully adorned with a great variety of the most lively teints; on each side of the body nine little oval holes are placed, which are generally considered as the organs of respiration. There are on each side of the head of the caterpillar five or six little black spots, which are supposed to be its eyes. These creatures vary in size, from half an inch long to four and five inches.
The caterpillar, whose life is one continued succession of changes, often moults its skin before it attains its full growth; not one of them arrives at perfection, without having cast its skin at least once or twice. These changes are the more remarkable, because when the caterpillar moults, it is not simply the skin that is changed; for we find in the exuvia, the skull, the jaws, and all the exterior parts, both scaly and membranaceous, which compose its upper and under lip, its antennæ, palpi, and even those crustaceous pieces within the head, which serve as a fixed basis to a number of muscles; we further find in the exuvia, the spiracula, the claws, and sheaths of the anterior limbs, and in general all that is visible of the caterpillar.
The new organs were under the old ones as in a sheath, so that the caterpillar effects the changes by withdrawing itself from the old skin, when it finds itself lodged in too narrow a compass. But to produce this change, to push off the old covering, and bring forward the new, is a work of labour and time. Those caterpillars who live in society, and have a kind of nest or habitation, retire there to change their skins, fixing the hooks of the feet, during the operation, firmly in the web of their nest. Some of the solitary species spin at this time a slender web, to which they affix themselves. A day or two before the critical moment approaches, the insect ceases to eat, and loses its usual activity; in proportion as the time of change advances, the colour of the caterpillar becomes more feeble, the skin hardens and withers, and is soon incapable of receiving those juices by which it was heretofore nourished and supported. The insect may now be seen, at distant intervals, to elevate its back, and stretch itself to its utmost extent; sometimes to lift up the head, move it a little from side to side, and then let it fall again; near the change, the second and third rings are seen to swell considerably; by these internal efforts the old parts are stretched and distended as much as possible, an operation which is attended with great difficulty, as the new parts are all weak and tender. However, by repeated exertions, all the vessels which conveyed the nourishment to the exterior skin are disengaged, and cease to act, and a slit is made on the back, generally beginning at the second or third ring; the new skin may now be just perceived, being distinguished by the freshness and brightness of its colour; the caterpillar then presses the body like a wedge into this slit, by which means it is soon opened from the first down to the fourth ring; this renders it large enough to afford the insect a passage, which it soon effects in a very curious manner. The caterpillar generally fasts a whole day after each moulting, for it is necessary that the parts should acquire a certain degree of consistency, before it can live and act in its usual manner; many also perish under the operation. The body having grown under the old skin, till the insect was become too large for it, it always appears much larger after it has quitted the exuvia: now as the growth was gradual, and the parts soft, the skin pressed them together, so that they lay in a small space; but as soon as the skin is cast off, they are as it were liberated from their bonds, and distend themselves considerably. Some caterpillars, in changing their skin, from smooth, become covered with fine hair; while others, that were covered with this fine hair, have the last skin smooth.[65] The silk-worm, previous to its chrysalis or pupa state, casts its skin four times; the first is cast on the tenth, eleventh, or twelfth day, according to the nature of the season; the second, in five or six days after; the third in five or six days more, and the fourth and last in six or seven days after the third.
[65] Valmont de Bomare Dictionnaire Universel d’Histoire Naturelle, vol. ii. 2d edit. 12mo. p. 394.
Before we describe the change of the larva into the pupa state, it will be necessary to give the reader an account of those names by which entomologists distinguish the different appearances of the insect in its pupa state. It is called Coarctata, when it is straitened or confined to a case of a globular form, without the smallest resemblance to the structure of the insect it contains, as in the diptera. It is called Obtecta, disguised or shrouded, when the insect is inveloped in a crustaceous covering, consisting of two parts, one of which surrounds the head and thorax, the other the abdomen. It is termed Incompleta, when the pupa has perceptible wings and feet, but cannot move them, as in most of the hymenoptera. Semicompleta; these can walk or run, but have only the rudiments of wings. The difference between the pupa and the larva of this class is very inconsiderable, as they eat, walk, and act, just as they did in their primitive state; the only remarkable difference is a kind of case which contains the wings that are to be developed in their fly state. Completa; those designed by this name take their perfect form at their birth, and do not pass, like other insects, through a variety of states, though they often change their skin.
It is a general rule, that all winged insects pass through the larva and pupa state, before they assume their perfect form: there are also insects which have no wings, and yet undergo similar transformations, as the bed bug, the flea, &c. Other insects, which have no wings, and which always remain without them, never pass through the pupa state, but are subject to considerable changes, as well with respect to the number, as the figure of their parts; thus mites have four pair of feet, and two smaller ones at the fore part of the body, near the head; yet some of these are born with only three pair of feet, the fourth is not perceived till some time after their birth.[66] The figure of the monoculus quadricornis of Linnæus (Fauna Suecica, edit. Stockholm, 1761, No. 2049) changes considerably after its birth.[67] The julus is an insect with a great number of feet, some species having an hundred pair and upwards. M. De Geer has given a description of one with more than two-hundred pair,[68] and yet these at their birth have only three pair, the rest are not perceived till some time after.
[66] De Geer Memoires pour servir a l’Histoire des Insectes, tom. 1. p. 154.