From many of the radiants year after year, upon the same day or week in each year, there comes a swarm of shooting stars, showing that there must be a continuous procession of meteors moving along this orbit, so that some are always ready to strike the earth whenever it reaches the intersection of its orbit with theirs. Such is the explanation of the shower which appears each year in the first half of August, and whose meteors are sometimes called Perseids, because their radiant lies in the constellation Perseus, and a similar explanation holds for all the star showers which are repeated year after year.

172. The Leonids.—There is, however, a kind of star shower, of which the Leonids (radiant in Leo) is the most conspicuous type, in which the shower, although repeated from year to year, is much more striking in some years than in others. Thus, to quote from the historian: "In 1833 the shower was well observed along the whole eastern coast of North America from the Gulf of Mexico to Halifax. The meteors were most numerous at about 5 A. M. on November 13th, and the rising sun could not blot out all traces of the phenomena, for large meteors were seen now and then in full daylight. Within the scope that the eye could contain, more than twenty could be seen at a time shooting in every direction. Not a cloud obscured the broad expanse, and millions of meteors sped their way across in every point of the compass. Their coruscations were bright, gleaming, and incessant, and they fell thick as the flakes in the early snows of December." But, so far as is known, none of them reached the ground. An illiterate man on the following day remarked: "The stars continued to fall until none were left. I am anxious to see how the heavens will appear this evening, for I believe we shall see no more stars."

An eyewitness in the Southern States thus describes the effect of this shower upon the plantation negroes: "Upward of a hundred lay prostrate upon the ground, some speechless and some with the bitterest cries, but with their hands upraised, imploring God to save the world and them. The scene was truly awful, for never did rain fall much thicker than the meteors fell toward the earth—east, west, north, and south it was the same." In the preceding year a similar but feebler shower from the same radiant created much alarm in France, and through the old historic records its repetitions may be traced back at intervals of 33 or 34 years, although with many interruptions, to October 12, 902, O. S., when "an immense number of falling stars were seen to spread themselves over the face of the sky like rain."

Such a star shower differs from the one repeated every year chiefly in the fact that its meteors, instead of being drawn out into a long procession, are mainly clustered in a single flock which may be long enough to require two or three or four years to pass a given point of its orbit, but which is far from extending entirely around it, so that meteors from this source are abundant only in those years in which the flock is at or near the intersection of its orbit with that of the earth. The fact that the Leonid shower is repeated at intervals of 33 or 34 years (it appeared in 1799, 1832-'33, 1866-'67) shows that this is the "periodic time" in its orbit, which latter must of course be an ellipse, and presumably a long and narrow one. It is this orbit which is shown in [Fig. 114], and the student should note in this figure that if the meteor stream at the point where it cuts through the plane of the earth's orbit were either nearer to or farther from the sun than is the earth there could be no shower; the earth and the meteors would pass by without a collision. Now, the meteors in their motion are subject to perturbations, particularly by the large planets Jupiter, Saturn, and Uranus, which slightly change the meteor orbit, and it seems certain that the changes thus produced will sometimes thrust the swarm inside or outside the orbit of the earth, and thus cause a failure of the shower at times when it is expected. The meteors were due at the crossing of the orbits in November, 1899 and 1900, and, although a few were then seen, the shower was far from being a brilliant one, and its failure was doubtless caused by the outer planets, which switched the meteors aside from the path in which they had been moving for a century. Whether they will be again switched back so as to produce future showers is at the present time uncertain.

173. Capture of the Leonids.—But a far more striking effect of perturbations is to be found in [Fig. 115], which shows the relation of the Leonid orbit to those of the principal planets, and illustrates a curious chapter in the history of the meteor swarm that has been worked out by mathematical analysis, and is probably a pretty good account of what actually befell them. Early in the second century of the Christian era this flock of meteors came down toward the sun from outer space, moving along a parabolic orbit which would have carried it just inside the orbit of Jupiter, and then have sent it off to return no more. But such was not to be its fate. As it approached the orbit of Uranus, in the year 126 A. D., that planet chanced to be very near at hand and perturbed the motion of the meteors to such an extent that the character of their orbit was completely changed into the ellipse shown in the figure, and in this new orbit they have moved from that time to this, permanent instead of transient members of the solar system. The perturbations, however, did not end with the year in which the meteors were captured and annexed to the solar system, but ever since that time Jupiter, Saturn, and Uranus have been pulling together upon the orbit, and have gradually turned it around into its present position as shown in the figure, and it is chiefly this shifting of the orbit's position in the thousand years that have elapsed since 902 A. D. that makes the meteor shower now come in November instead of in October as it did then.

174. Breaking up a meteor swarm.—How closely packed together these meteors were at the time of their annexation to the solar system is unknown, but it is certain that ever since that time the sun has been exerting upon them a tidal influence tending to break up the swarm and distribute its particles around the orbit, as the Perseids are distributed, and, given sufficient time, it will accomplish this, but up to the present the work is only partly done. A certain number of the meteors have gained so much over the slower moving ones as to have made an extra circuit of the orbit and overtaken the rear of the procession, so that there is a thin stream of them extending entirely around the orbit and furnishing in every November a Leonid shower; but by far the larger part of the meteors still cling together, although drawn out into a stream or ribbon, which, though very thin, is so long that it takes some three years to pass through the perihelion of its orbit. It is only when the earth plunges through this ribbon, as it should in 1899, 1900, 1901, that brilliant Leonid showers can be expected.

175. Relation of comets and meteors.—It appears from the foregoing that meteors and comets move in similar orbits, and we have now to push the analogy a little further and note that in some instances at least they move in identically the same orbit, or at least in orbits so like that an appreciable difference between them is hardly to be found. Thus a comet which was discovered and observed early in the year 1866, moves in the same orbit with the Leonid meteors, passing its perihelion about ten months ahead of the main body of the meteors. If it were set back in its orbit by ten months' motion, it would be a part of the meteor swarm. Similarly, the Perseid meteors have a comet moving in their orbit actually immersed in the stream of meteor particles, and several other of the more conspicuous star showers have comets attending them.