CHAPTER XIII

THE FIXED STARS

184. The constellations.—In the earlier chapters the student has learned to distinguish between wandering stars (planets) and those fixed luminaries which remain year after year in the same constellation, shining for the most part with unvarying brilliancy, and presenting the most perfect known image of immutability. Homer and Job and prehistoric man saw Orion and the Pleiades much as we see them to-day, although the precession, by changing their relation to the pole of the heavens, has altered their risings and settings, and it may be that their luster has changed in some degree as they grew old with the passing centuries.

The division of the sky into constellations dates back to the most primitive times, long before the Christian era, and the crooked and irregular boundaries of these constellations, shown by the dotted lines in [Fig. 120], such as no modern astronomer would devise, are an inheritance from antiquity, confounded and made worse in its descent to our day. The boundaries assigned to constellations near the south pole are much more smooth and regular, since this part of the sky, invisible to the peoples from whom we inherit, was not studied and mapped until more modern times. The old traditions associated with each constellation a figure, often drawn from classical mythology, which was supposed to be suggested by the grouping of the stars: thus Ursa Major is a great bear, stalking across the sky, with the handle of the Dipper for his tail; Leo is a lion; Cassiopeia, a lady in a chair; Andromeda, a maiden chained to a rock, etc.; but for the most part the resemblances are far-fetched and quite too fanciful to be followed by the ordinary eye.

185. The number of stars.—"As numerous as the stars of heaven" is a familiar figure of speech for expressing the idea of countless number, but as applied to the visible stars of the sky the words convey quite a wrong impression, for, under ordinary circumstances, in a clear sky every star to be seen may be counted in the course of a few hours, since they do not exceed 3,000 or 4,000, the exact number depending upon atmospheric conditions and the keenness of the individual eye. Test your own vision by counting the stars of the Pleiades. Six are easily seen, and you may possibly find as many as ten or twelve; but however many are seen, there will be a vague impression of more just beyond the limit of visibility, and doubtless this impression is partly responsible for the popular exaggeration of the number of the stars. In fact, much more than half of what we call starlight comes from stars which are separately too small to be seen, but whose number is so great as to more than make up for their individual faintness.

The Milky Way is just such a cloud of faint stars, and the student who can obtain access to a small telescope, or even an opera glass, should not fail to turn it toward the Milky Way and see for himself how that vague stream of light breaks up into shining points, each an independent star. These faint stars, which are found in every part of the sky as well as in the Milky Way, are usually called telescopic, in recognition of the fact that they can be seen only in the telescope, while the other brighter ones are known as lucid stars.

186. Magnitudes.—The telescopic stars show among themselves an even greater range of brightness than do the lucid ones, and the system of magnitudes ([§ 9]) has accordingly been extended to include them, the faintest star visible in the greatest telescope of the present time being of the sixteenth or seventeenth magnitude, while, as we have already learned, stars on the dividing line between the telescopic and the lucid ones are of the sixth magnitude. To compare the amount of light received from the stars with that from the planets, and particularly from the sun and moon, it has been found necessary to prolong the scale of magnitudes backward into the negative numbers, and we speak of the sun as having a stellar magnitude represented by the number -26.5. The full moon's stellar magnitude is -12, and the planets range from -3 (Venus) to +8 (Neptune). Even a very few of the stars are so bright that negative magnitudes must be used to represent their true relation to the fainter ones. Sirius, for example, the brightest of the fixed stars, is of the -1 magnitude, and such stars as Arcturus and Vega are of the 0 magnitude.