211. Stellar spectra.—When the spectra of great numbers of stars are compared one with another, it is found that they bear some relation to the colors of the stars, as, indeed, we should expect, since spectrum and color are both produced by the stellar atmospheres, and it is found useful to classify these spectra into three types, as follows:

Type I. Sirian stars.—Speaking generally, the stars which are white or very faintly tinged with yellow, furnish spectra like that of Sirius, from which they take their name, or that of β Aurigæ ([Fig. 124]), which is a continuous spectrum, especially rich in energy of short wave length—i. e., violet and ultra-violet light, and is crossed by a relatively small number of heavy dark lines corresponding to the spectrum of hydrogen. Sometimes, however, these lines are much fainter than is here shown, and we find associated with them still other faint ones pointing to the presence of other metallic substances in the star's atmosphere. These metallic lines are not always present, and sometimes even the hydrogen lines themselves are lacking, but the spectrum is always rich in violet and ultra-violet light.

Since with increasing temperature a body emits a continually increasing proportion of energy of short wave length ([§ 118]), the richness of these spectra in such energy points to a very high temperature in these stars, probably surpassing in some considerable measure that of the sun. Stars with this type of spectrum are more numerous than all others combined, but next to them in point of numbers stands—

Type II. Solar stars.—To this type of spectrum belong the yellow stars, which show spectra like that of the sun, or of Pollux ([Fig. 125]). These are not so rich in violet light as are those of Type I, but in complexity of spectrum and in the number of their absorption lines they far surpass the Sirian stars. They are supposed to be at a lower temperature than the Sirian stars, and a much larger number of chemical elements seems present and active in the reversing layer of their atmospheres. The strong resemblance which these spectra bear to that of the sun, together with the fact that most of the sun's stellar neighbors have spectra of this type, justify us in ranking both them and it as members of one class, called solar stars.

Type III. Red stars.—A small number of stars show spectra comparable with that of α Herculis ([Fig. 134]), in which the blue and the violet part of the spectrum is almost obliterated, and the remaining yellow and red parts show not only dark lines, but also numerous broad dark bands, sharp at one edge, and gradually fading out at the other. It is this selective absorption, extinguishing the blue and leaving the red end of the spectrum, which produces the ruddy color of these stars, while the bands in their spectra "are characteristic of chemical combinations, and their presence ... proves that at certain elevations in the atmospheres of these stars the temperature has sunk so low that chemical combinations can be formed and maintained" (Scheiner-Frost). One of the chemical compounds here indicated is a hydrocarbon similar to that found in comets. In the white and yellow stars the temperatures are so high that the same chemical elements, although present, can not unite one with another to form compound substances.

Most of the variable stars are red and have spectra of the third type; but this does not hold true for the eclipse variables like Algol, all of which are white stars with spectra of the first type. The ordinary variable star is therefore one with a dense atmosphere of relatively low temperature and complex structure, which produces the prevailing red color of these stars by absorbing the major part of their radiant energy of short wave length while allowing the longer, red waves to escape. Although their exact nature is not understood, there can be little doubt that the fluctuation in the light of these stars is due to processes taking place within the star itself, but whether above or below its photosphere is still uncertain.

212. Classes of stars.—There is no hard-and-fast dividing line between these types of stellar spectra, but the change from one to another is by insensible gradations, like the transition from youth to manhood and from manhood to old age, and along the line of transition are to be found numberless peculiarities and varieties of spectra not enumerated above—e. g., a few stars show not only dark absorption lines in their spectra but bright lines as well, which, like those in [Fig. 48], point to the presence of incandescent vapors, even in the outer parts of their atmospheres. Among the lucid stars about 75 per cent have spectra of the first type, 23 per cent are of the second type, 1 per cent of the third type, and the remaining 1 per cent are peculiar or of doubtful classification. Among the telescopic stars it is probable that much the same distribution holds, but in the present state of knowledge it is not prudent to speak with entire confidence upon this point.

That the great number of stars whose spectra have been studied should admit of a classification so simple as the above, is an impressive fact which, when supplemented by the further fact of a gradual transition from one type of spectrum to the next, leaves little room for doubt that in the stars we have an innumerable throng of individuals belonging to the same species but in different stages of development, and that the sun is only one of these individuals, of something less than medium size and in a stage of development which is not at all peculiar, since it is shared by nearly a fourth of all the stars.