221. The stellar system.—But the arrangement of the stars is not altogether lawless and chaotic; there are traces of order and system, and among these the Milky Way is the dominant feature. Telescope and photographic plate alike show that it is made up of stars which, although quite irregularly scattered along its course, are on the average some twenty times as numerous in the galaxy as at its poles, and which thin out as we recede from it on either side, at first rapidly and then more slowly. This tendency to cluster along the Milky Way is much more pronounced among the very faint telescopic stars than among the brighter ones, for the lucid stars and the telescopic ones down to the tenth or eleventh magnitude, while very plainly showing the clustering tendency, are not more than three times as numerous in the galaxy as in the constellations most remote from it. It is remarkable as showing the condensation of the brightest stars that one half of all the stars in the sky which are brighter than the second magnitude are included within a belt extending 12° on either side of the center line of the galaxy.
In addition to this general condensation of stars toward the Milky Way, there are peculiarities in the distribution of certain classes of stars which are worth attention. Planetary nebulæ and new stars are seldom, if ever, found far from the Milky Way, and stars with bright lines in their spectra especially affect this region of the sky. Stars with spectra of the first type—Sirian stars—are much more strongly condensed toward the Milky Way than are stars of the solar type, and in consequence of this the Milky Way is peculiarly rich in light of short wave lengths. Resolvable star clusters are so much more numerous in the galaxy than elsewhere, that its course across the sky would be plainly indicated by their grouping upon a map showing nothing but clusters of this kind.
On the other hand, nebulæ as a class show a distinct aversion for the galaxy, and are found most abundantly in those parts of the sky farthest from it, much as if they represented raw material which was lacking along the Milky Way, because already worked up to make the stars which are there so numerous.
222. Relation of the sun to the Milky Way.—The fact that the galaxy is a great circle of the sky, but only of moderate width, shows that it is a widely extended and comparatively thin stratum of stars within which the solar system lies, a member of the galactic system, and probably not very far from its center. This position, however, is not to be looked upon as a permanent one, since the sun's motion, which lies nearly in the plane of the Milky Way, is ceaselessly altering its relation to the center of that system, and may ultimately carry us outside its limits.
The Milky Way itself is commonly thought to be a ring, or series of rings, like the coils of the great spiral nebula in Andromeda, and separated from us by a space far greater than the thickness of the ring itself. Note in Figs. [149] and [150] how the background is made up of bright and dark parts curiously interlaced, and presenting much the appearance of a thin sheet of cloud through which we look to barren space beyond. While, mathematically, this appearance can not be considered as proof that the galaxy is in fact a distant ring, rather than a sheet of starry matter stretching continuously from the nearer stellar neighbors of the sun into the remotest depths of space, nevertheless, most students of the question hold it to be such a ring of stars, which are relatively close together while its center is comparatively vacant, although even here are some hundreds of thousands of stars which on the whole have a tendency to cluster near its plane and to crowd together a little more densely than elsewhere in the region where the sun is placed.
223. Dimensions of the galaxy.—The dimensions of this stellar system are wholly unknown, but there can be no doubt that it extends farther in the plane of the Milky Way than at right angles to that plane, for stars of the fifteenth and sixteenth magnitudes are common in the galaxy, and testify by their feeble light to their great distance from the earth, while near the poles of the Milky Way there seem to be few stars fainter than the twelfth magnitude. Herschel, with his telescope of 18 inches aperture, could count in the Milky Way more than a dozen times as many stars per square degree as could Celoria with a telescope of 4 inches aperture; but around the poles of the galaxy the two telescopes showed practically the same number of stars, indicating that here even the smaller telescope reached to the limits of the stellar system. Very recently, indeed, the telescope with which [Fig. 140] was photographed seems to have reached the farthest limit of the Milky Way, for on a photographic plate of one of its richest regions Roberts finds it completely resolved into stars which stand out upon a black background with no trace of nebulous light between them.
224. Beyond the Milky Way.—Each additional step into the depths of space brings us into a region of which less is known, and what lies beyond the Milky Way is largely a matter of conjecture. We shrink from thinking it an infinite void, endless emptiness, and our intellectual sympathies go out to Lambert's speculation of a universe filled with stellar systems, of which ours, bounded by the galaxy, is only one. There is, indeed, little direct evidence that other such systems exist, but the Andromeda nebula is not altogether unlike a galaxy with a central cloud of stars, and in the southern hemisphere, invisible in our latitudes, are two remarkable stellar bodies like the Milky Way in appearance, but cut off from all apparent connection with it, much as we might expect to find independent stellar systems, if such there be.
These two bodies are known as the Magellanic clouds, and individually bear the names of Major and Minor Nubecula. According to Sir John Herschel, "the Nubecula Major, like the Minor, consists partly of large tracts and ill-defined patches of irresolvable nebula, and of nebulosity in every stage of resolution up to perfectly resolved stars like the Milky Way, as also of regular and irregular nebulæ ... of globular clusters in every stage of resolvability, and of clustering groups sufficiently insulated and condensed to come under the designation of clusters of stars." Its outlines are vague and somewhat uncertain, but surely include an area of more than 40 square degrees—i. e., as much as the bowl of the Big Dipper—and within this area Herschel counted several hundred nebulæ and clusters "which far exceeds anything that is to be met with in any other region of the heavens." Although its excessive complexity of detail baffled Herschel's attempts at artistic delineation, it has yielded to the modern photographic processes, which show the Nubecula Major to be an enormous spiral nebula made up of subordinate stars, nebulæ, and clusters, as is the Milky Way.
Compared with the Andromeda nebula, its greater angular extent suggests a smaller distance, although for the present all efforts at determining the parallax of either seem hopeless. But the spiral form which is common to both suggests that the Milky Way itself may be a gigantic spiral nebula near whose center lies the sun, a humble member of a great cluster of stars which is roughly globular in shape, but flattened at the poles of the galaxy and completely encircled by its coils. However plausible such a view may appear, it is for the present, at least, pure hypothesis, although vigorously advocated by Easton, who bases his argument upon the appearance of the galaxy itself.
225. Absorption of starlight.—We have had abundant occasion to learn that at least within the confines of the solar system meteoric matter, cosmic dust, is profusely scattered, and it appears not improbable that the same is true, although in smaller degree, in even the remoter parts of space. In this case the light which comes from the farther stars over a path requiring many centuries to travel, must be in some measure absorbed and enfeebled by the obstacles which it encounters on the way. Unless celestial space is transparent to an improbable degree the remoter stars do not show their true brightness; there is a certain limit beyond which no star is able to send its light, and beyond which the universe must be to us a blank. A lighthouse throws into the fog its beams only to have them extinguished before a single mile is passed, and though the celestial lights shine farther, a limit to their reach is none the less certain if meteoric dust exists outside the solar system. If there is such an absorption of light in space, as seems plausible, the universe may well be limitless and the number of stellar systems infinite, although the most attenuated of dust clouds suffices to conceal from us and to shut off from our investigation all save a minor fraction of it and them.