It is only when a lens is placed between the lamp and the slit of the spectroscope that the three spectra are shown distinct from each other as in the figure. The purpose of the lens is to make a picture of the lamp upon the slit, so that all the radiant energy from any one point of the arc may be brought to one part of the slit, and thus appear in the resulting spectrum separated from the energy which comes from every other part of the arc. Such an instrument is called an analyzing spectroscope while one without the lens is called an integrating spectroscope, since it furnishes to each point of the slit a sample of the radiant energy coming from every part of the source of light, and thus produces only an average spectrum of that source without distinction of its parts. When a spectroscope is attached to a telescope, as is often done (see [Fig. 49]), the eyepiece is removed to make way for it, and the telescope objective takes the part of the analyzing lens. A camera is frequently combined with such an apparatus to photograph the spectra it furnishes, and the whole instrument is then called a spectrograph.
85. Spectrum analysis.—Having seen the mechanism of the spectroscope by which the light incident upon it is resolved into its constituent parts and drawn out into a series of colors arranged in the order of their wave lengths, we have now to consider the interpretation which is to be placed upon the various kinds of spectra which may be seen, and here we rely upon the experience of physicists and chemists, from whom we learn as follows:
The radiant energy which is analyzed by the spectroscope has its source in the atoms and molecules which make up the luminous body from which the energy is radiated, and these atoms and molecules are able to impress upon the ether their own peculiarities in the shape of waves of different length and amplitude. We have seen that by varying the conditions of the experiment different kinds of waves may be produced in a bucket of water; and as a study of these waves might furnish an index to the conditions which produced them, so the study of the waves peculiar to the light which comes from any source may be made to give information about the molecules which make up that source. Thus the molecules of iron produce a system of waves peculiar to themselves and which can be duplicated by nothing else, and every other substance gives off its own peculiar type of energy, presenting a limited and definite number of wave lengths dependent upon the nature and condition of its molecules. If these molecules are free to behave in their own characteristic fashion without disturbance or crowding, they emit light of these wave lengths only, and we find in the spectrum a series of bright lines, pictures of the slit produced by light of these particular wave lengths, while between these bright lines lie dark spaces showing the absence from the radiant energy of light of intermediate wave lengths. Such a spectrum is shown in the central portion of [Fig. 47], which, as we have already seen, is produced by the space between the carbons of the arc lamp. On the other hand, if the molecules are closely packed together under pressure they so interfere with each other as to give off a jumble of energy of all wave lengths, and this is translated by the spectroscope into a continuous ribbon of light with no dark spaces intervening, as in the upper and lower parts of Figs. [47] and [48], produced by the incandescent solid carbons of the lamp. These two types are known as the continuous and discontinuous spectrum, and we may lay down the following principle regarding them:
A discontinuous spectrum, or bright-line spectrum as it is familiarly called, indicates that the molecules of the source of light are not crowded together, and therefore the light must come from an incandescent gas. A continuous spectrum shows only that the molecules are crowded together, or are so numerous that the body to which they belong is not transparent and gives no further information. The body may be solid, liquid, or gaseous, but in the latter case the gas must be under considerable pressure or of great extent.
A second principle is: The lines which appear in a spectrum are characteristic of the source from which the light came—e. g., the double line in the yellow part of the spectrum at the extreme left in [Fig. 47] is produced by sodium vapor in and around the electric arc and is never produced by anything but sodium. When by laboratory experiments we have learned the particular set of lines corresponding to iron, we may treat the presence of these lines in another spectrum as proof that iron is present in the source from which the light came, whether that source be a white-hot poker in the next room or a star immeasurably distant. The evidence that iron is present lies in the nature of the light, and there is no reason to suppose that nature to be altered on the way from star to earth. It may, however, be altered by something happening to the source from which it comes—e. g., changing temperature or pressure may affect, and does affect, the spectrum which such a substance as iron emits, and we must be prepared to find the same substance presenting different spectra under different conditions, only these conditions must be greatly altered in order to produce radical changes in the spectrum.