CHAPTER IX

THE MOON

91. Results of observation with the unaided eye.—The student who has made the observations of the moon which are indicated in [Chapter III] has in hand data from which much may be learned about the earth's satellite. Perhaps the most striking feature brought out by them is the motion of the moon among the stars, always from west toward east, accompanied by that endless series of changes in shape and brightness—new moon, first quarter, full moon, etc.—whose successive stages we represent by the words, the phase of the moon. From his own observation the student should be able to verify, at least approximately, the following statements, although the degree of numerical precision contained in some of them can be reached only by more elaborate apparatus and longer study than he has given to the subject:

A. The phase of the moon depends upon the distance apart of sun and moon in the sky, new moon coming when they are together, and full moon when they are as far apart as possible.

B. The moon is essentially a round, dark body, giving off no light of its own, but shining solely by reflected sunlight. The proof of this is that whenever we see a part of the moon which is turned away from the sun it looks dark—e. g., at new moon, sun and moon are in nearly the same direction from us and we see little or nothing of the moon, since the side upon which the sun shines is turned away from us. At full moon the earth is in line between sun and moon, and we see, round and bright, the face upon which the sun shines. At other phases, such as the quarters, the moon turns toward the earth a part of its night hemisphere and a part of its day hemisphere, but in general only that part which belongs to the day side of the moon is visible and the peculiar curved line which forms the boundary—the "ragged edge," or terminator, as it is called, is the dividing line between day and night upon the moon.

A partial exception to what precedes is found for a few days after new moon when the moon and sun are not very far apart in the sky, for then the whole round disk of the moon may often be seen, a small part of it brightly illuminated by the sun and the larger part feebly illuminated by sunlight which fell first upon the earth and was by it reflected back to the moon, giving the pleasing effect which is sometimes called the old moon in the new moon's arms. The new moon—i. e., the part illumined by the sun—usually appears to belong to a sphere of larger radius than the old moon, but this is purely a trick played by the eyes of the observer, and the effect disappears altogether in a telescope. Is there any similar effect in the few days before new moon?

C. The moon makes the circuit of the sky from a given star around to the same star again in a little more than 27 days (27.32166), but the interval between successive new moons—i. e., from the sun around to the sun again—is more than 29 days (29.53059). This last interval, which is called a lunar month or synodical month, indicates what we have learned before—that the sun has changed its place among the stars during the month, so that it takes the moon an extra two days to overtake him after having made the circuit of the sky, just as it takes the minute hand of a clock an extra 5 minutes to catch up with the hour hand after having made a complete circuit of the dial.