Fig. 3.—Finding the moon's distance from the earth.
In the same manner, by sighting at the moon from widely different parts of the earth, as in [Fig. 3], the moon's distance from us is found to be about a quarter of a million miles. What is the base line in this case?
4. The horizon—altitudes.—In their observations astronomers and sailors make much use of the plane of the horizon, and practically any flat and level surface, such as that of a smooth pond, may be regarded as a part of this plane and used as such. A very common observation relating to the plane of the horizon is called "taking the sun's altitude," and consists in measuring the angle between the sun's rays and the plane of the horizon upon which they fall. This angle between a line and a plane appears slightly different from the angle between two lines, but is really the same thing, since it means the angle between the sun's rays and a line drawn in the plane of the horizon toward the point directly under the sun. Compare this with the definition given in the geographies, "The latitude of a point on the earth's surface is its angular distance north or south of the equator," and note that the latitude is the angle between the plane of the equator and a line drawn from the earth's center to the given point on its surface.
A convenient method of obtaining a part of the plane of the horizon for use in observation is as follows: Place a slate or a pane of glass upon a table in the sunshine. Slightly moisten its whole surface and then pour a little more water upon it near the center. If the water runs toward one side, thrust the edge of a thin wooden wedge under this side and block it up until the water shows no tendency to run one way rather than another; it is then level and a part of the plane of the horizon. Get several wedges ready before commencing the experiment. After they have been properly placed, drive a pin or tack behind each one so that it may not slip.
5. Taking the sun's altitude. Exercise 4.—Prepare a piece of board 20 centimeters, or more, square, planed smooth on one face and one edge. Drive a pin perpendicularly into the face of the board, near the middle of the planed edge. Set the board on edge on the horizon plane and turn it edgewise toward the sun so that a shadow of the pin is cast on the plane. Stick another pin into the board, near its upper edge, so that its shadow shall fall exactly upon the shadow of the first pin, and with a watch or clock observe the time at which the two shadows coincide. Without lifting the board from the plane, turn it around so that the opposite edge is directed toward the sun and set a third pin just as the second one was placed, and again take the time. Remove the pins and draw fine pencil lines, connecting the holes, as shown in [Fig. 4], and with the protractor measure the angle thus marked. The student who has studied elementary geometry should be able to demonstrate that at the mean of the two recorded times the sun's altitude was equal to one half of the angle measured in the figure.
Fig. 4.—Taking the sun's altitude.
When the board is turned edgewise toward the sun so that its shadow is as thin as possible, rule a pencil line alongside it on the horizon plane. The angle which this line makes with a line pointing due south is called the sun's azimuth. When the sun is south, its azimuth is zero; when west, it is 90°; when east, 270°, etc.
Exercise 5.—Let a number of different students take the sun's altitude during both the morning and afternoon session and note the time of each observation, to the nearest minute. Verify the setting of the plane of the horizon from time to time, to make sure that no change has occurred in it.