The last section must have made clear the difficulties the way of assigning to the ancient nations their proper place in the development of primitive notions about astronomy. The fact that some alleged observations date back to a period before the Chinese had invented the art of writing leads immediately to the question how far tradition can be trusted.

Our first detailed knowledge was gathered in the far East by travellers, and by the Jesuit priests, and was published in the eighteenth century. The Asiatic Society of Bengal contributed translations of Brahmin literature. The two principal sources of knowledge about Chinese astronomy were supplied, first by Father Souciet, who in 1729 published Observations Astronomical, Geographical, Chronological, and Physical, drawn from ancient Chinese books; and later by Father Moyriac-de-Mailla, who in 1777-1785 published Annals of the Chinese Empire, translated from Tong-Kien-Kang-Mou.

Bailly, in his Astronomie Ancienne (1781), drew, from these and other sources, the conclusion that all we know of the astronomical learning of the Chinese, Indians, Chaldæans, Assyrians, and Egyptians is but the remnant of a far more complete astronomy of which no trace can be found.

Delambre, in his Histoire de l’Astronomie Ancienne (1817), ridicules the opinion of Bailly, and considers that the progress made by all of these nations is insignificant.

It will be well now to give an idea of some of the astronomy of the ancients not yet entirely discredited. China and Babylon may be taken as typical examples.

China.—It would appear that Fohi, the first emperor, reigned about 2952 B.C., and shortly afterwards Yu-Chi made a sphere to represent the motions of the celestial bodies. It is also mentioned, in the book called Chu-King, supposed to have been written in 2205 B.C., that a similar sphere was made in the time of Yao (2357 B.C.).[[1]] It is said that the Emperor Chueni (2513 B.C.) saw five planets in conjunction the same day that the sun and moon were in conjunction. This is discussed by Father Martin (MSS. of De Lisle); also by M. Desvignolles (Mem. Acad. Berlin, vol. iii., p. 193), and by M. Kirsch (ditto, vol. v., p. 19), who both found that Mars, Jupiter, Saturn, and Mercury were all between the eleventh and eighteenth degrees of Pisces, all visible together in the evening on February 28th 2446 B.C., while on the same day the sun and moon were in conjunction at 9 a.m., and that on March 1st the moon was in conjunction with the other four planets. But this needs confirmation.

Yao, referred to above, gave instructions to his astronomers to determine the positions of the solstices and equinoxes, and they reported the names of the stars in the places occupied by the sun at these seasons, and in 2285 B.C. he gave them further orders. If this account be true, it shows a knowledge that the vault of heaven is a complete sphere, and that stars are shining at mid-day, although eclipsed by the sun’s brightness.

It is also asserted, in the book called Chu-King, that in the time of Yao the year was known to have 365¼ days, and that he adopted 365 days and added an intercalary day every four years (as in the Julian Calendar). This may be true or not, but the ancient Chinese certainly seem to have divided the circle into 365 degrees. To learn the length of the year needed only patient observation—a characteristic of the Chinese; but many younger nations got into a terrible mess with their calendar from ignorance of the year’s length.

It is stated that in 2159 B.C. the royal astronomers Hi and Ho failed to predict an eclipse. It probably created great terror, for they were executed in punishment for their neglect. If this account be true, it means that in the twenty-second century B.C. some rule for calculating eclipses was in use. Here, again, patient observation would easily lead to the detection of the eighteen-year cycle known to the Chaldeans as the Saros. It consists of 235 lunations, and in that time the pole of the moon’s orbit revolves just once round the pole of the ecliptic, and for this reason the eclipses in one cycle are repeated with very slight modification in the next cycle, and so on for many centuries.

It may be that the neglect of their duties by Hi and Ho, and their punishment, influenced Chinese astronomy; or that the succeeding records have not been available to later scholars; but the fact remains that—although at long intervals observations were made of eclipses, comets, and falling stars, and of the position of the solstices, and of the obliquity of the ecliptic—records become rare, until 776 B.C., when eclipses began to be recorded once more with some approach to continuity. Shortly afterwards notices of comets were added. Biot gave a list of these, and Mr. John Williams, in 1871, published Observations of Comets from 611 B.C. to 1640 A.D., Extracted from the Chinese Annals.