[Riccia.]

474. Form of the floating riccia (R. fluitans).—The general form of floating riccia is that of a narrow, irregular, flattened, ribbon-like object, which forks repeatedly, in a dichotomous manner, so that there are several lobes to a single plant. It receives its name from the fact that at certain seasons of the year it may be found floating on the water of pools or lakes. When the water lowers it comes to rest on the damp soil, and rhizoids are developed from the under side. Now the sexual organs, and later the fruit capsule, are developed.

475. Form of the circular riccia (R. crystallina).—The circular riccia is shown in [fig. 252]. The form of this one is quite different from the floating one, but the manner of growth is much the same. The branching is more compact and even, so that a circular plant is the result. This riccia inhabits muddy banks, lying flat on the wet surface, and deriving its soluble food by means of the little rootlets (rhizoids) which grow out from the under surface.

Fig. 252.
Thallus of
Riccia crystallina.

Here and there on the margin are narrow slits, which extend nearly to the central point. They are not real slits, however, for they were formed there as the plant grew. Each one of these V-shaped portions of the thallus is a lobe, and they were formed in the young condition of the plant by a branching in a forked manner. Since growth took place in all directions radially the plant became circular in form. These large lobes we can see are forked once or twice again, as shown by the seeming shorter slits in the margin.

476. Sexual organs.—In order to study the sexual organs we must make thin sections through one of these lobes lengthwise and perpendicular to the thallus surface. These sections are mounted for examination with the microscope.

477. Archegonia.—We are apt to find the organs in various stages of development, but we will select one of the flask-shaped structures shown in [fig. 253] for study. This flask-shaped body we see is entirely sunk in the tissue of the thallus. This structure is the female organ, and is what we term in these plants the archegonium. It is more complicated in structure than the oogonium. The lower portion is enlarged and bellied out, and is the venter of the archegonium, while the narrow portion is the neck. We here see it in section. The wall is one cell layer in thickness. In the neck is a canal, and in the base of the venter we see a large rounded cell with a distinct and large nucleus. This cell is the egg cell.

478. Antheridia.—The antheridia are also borne in cavities sunk in the tissue of the thallus. There is here no illustration of the antheridium of this riccia, but [fig. 259] represents an antheridium of another liverwort, and there is not a great difference between the two kinds. Each one of those little rectangular sperm mother cells in the antheridium changes into a swiftly moving body like a little club with two long lashes attached to the smaller end. By the violent lashing of these organs the spermatozoid is moved through the water, or moisture which is on the surface of the thallus. It moves through the canal of the archegonium neck and into the egg, where it fuses with the nucleus of the egg, and thus fertilization is effected.

479. Embryo.—In the plants which we have selected thus far for study, the egg, immediately after fecundation, we recollect, passed into a resting state, and was enclosed by a thick protecting wall. But in riccia, and in the other plants of the group which we are now studying, this is not the case. The egg, on the other hand, after acquiring a thin wall, swells up and fills the cavity of the venter. Then it divides by a cross wall into two cells. These two grow, and divide again, and so on until there is formed a quite large mass of cells rounded in form and still contained in the venter of the archegonium, which itself increases in size by the growth of the cells of the wall.