Upon the fact that the refractive index of a substance varies for light of different colours depends such familiar phenomena as the splendour of the rainbow and the ‘fire’ of the diamond. When white light is refracted into a stone it no longer remains white, but is split up into a spectrum. Except in certain anomalous substances the refractive index increases progressively as the wave-length of the light decreases, and consequently a normal spectrum is violet at one end and passes through green and yellow to red at the other end. The width of the spectrum, which may be measured by the difference between the refractive indices for the extreme red and violet rays, also varies, though on the whole it increases with the refractive index. It is the dispersion, as this difference is termed, that determines the ‘fire’—a character of the utmost importance in colourless transparent stones, which, but for it, would be lacking in interest. Diamond excels all colourless stones in this respect, although it is closely followed by zircon, the colour of which has been driven off by heating; it is, however, surpassed by two coloured species: sphene, which is seldom seen in jewellery, and demantoid, the green garnet from the Urals, which often passes under the misnomer ‘olivine.’ The dispersion of the more prominent species for the B and G lines of the solar spectrum is given in [Table IV] at the end of the book.
We will now proceed to discuss methods that may be used for the measurement of the refractive indices of cut stones.
CHAPTER IV
MEASUREMENT OF REFRACTIVE INDICES
THE methods available for the measurement of refractive indices are of two kinds, and make use of two different principles. The first, which is based upon the very simple relation found in the last chapter to subsist at total-reflection, can be used with ease and celerity, and is best suited for discriminative purposes; but it is restricted in its application. The second, which depends on the measurement of the angle between two facets and the minimum deviation experienced by a ray of light when traversing a prism formed by them, is more involved, entails the use of more elaborate apparatus, and takes considerable time, but it is less restricted in its application.
(1) The Method of Total-Reflection
We see from equation b ([p. 18]), connecting the angle of total-reflection with the refractive indices of the adjacent media, that, if the denser medium be constant, the indices of all less dense media may be easily determined from a measurement of the corresponding critical angle. In all refractometers the constant medium is a glass with a high refractive index. Some instruments have rotatory parts, by means of which this angle is actually measured. Such instruments give very good results, but suffer from the disadvantages of being neither portable nor convenient to handle, and of not giving a result without some computation.
Fig. 16.—Refractometer (actual size).