Fig. 1 is a sectional elevation of boiler; fig. 2, an elevation of absorption chamber; fig. 3, a plan of same.



A, the furnace; B, the absorption chamber sectioned on the line I, J, fig. 3; C, the chimney or funnel; D, the outer shell; E, the steam chest; F, the narrowest part of eccentric water space through which the tubes are supplied with water at their lower ends; K, the widest part of eccentric water space through which the upper ends of the tubes deliver the steam produced from the heat absorbed by the tubes, and transmitted to the water during its passage through them. By the arrangement of tubes shown at G, fig. 2, and at H, fig. 3, and water spaces shown at F and K, figures 1 and 3, a general circulation of water is obtained in the boiler, and especially through the tubes, while the water space at K increasing upwards allows of an easy separation of steam from the accompanying water, and of its rising into the steam chest separated, thus materially preventing priming, while the water returns to the lower ends of the tubes, thereby maintaining a constant circulation through them in the direction shown by the arrows; and by crossing the tubes in alternate layers, a constant flow towards and into their lower ends is induced, and a constant discharge from the upper ends throughout the other half, thus causing general and uninterrupted currents of water and steam.

As a conclusion to the subject of Fire-Engines, I may state that, when compared with manual engines, the steam-engines show an immense saving. From a return made to the Metropolitan Fire Brigade authorities, it was proved that at a fire in St. Katharine’s Docks there were nine steam-fire-engines at work from three to ten hours, the total cost of fuel being £3 18s. 5d., while the quantity of water thrown on the fire was estimated at 938,480 gallons.

The number of manual engines required to produce the same result would be forty-one, requiring 1,904 men to work them, at a cost of £476, including refreshments, showing a balance in favour of employing the steamers of £472 1s. 7d. The proportion of the cost was as 1 to 121; or, in other words, steamers for 20s. expenditure pump 251,000 gallons, and manuals for the same sum only 2,227.

These Steam Fire-Engines have frequently been used for other purposes than that of quenching fire. After the Sheffield inundation, one was used for a week continuously to raise water from the basements of dwellings; and many towns have had their water-supply kept up by the use of these invaluable engines, which will no doubt come into yet more extended use.

The most that can be done after constant care has failed to prevent fire, is to rely upon extraneous help to put it out; and this too often fails, in London at all events, because of the absurdities of the water supply. The work that can be done in attempting to extinguish a fire at an early stage is worth everything, and yet matters are so arranged that the firemen may get to a fire and watch it burning, while the turncock is sent for to find the plug and get the required supply of water; and if the pressure happens to be low in the main the supply runs short. Now this occurs at comparatively small fires; what if a whole street were ablaze, or a fire like that in Tooley Street broke out, away from the river with its friendly supply of water? Consequences of a most serious nature may result from the present system, which all persons, excepting the Water Companies, blame, and nobody alters. Constant water pressure and a good system of hydrants are urgently needed in every town. Without this the most efficient fire brigade in the world would be hampered, and it seems a crime to let anything stand in the way of the full development of the energy displayed by fire brigades like that in London—certainly the best in existence. By the kindness of its chief I am enabled to supply a few particulars about this energetic body of men, to whom the public are so indebted, and of the work they perform.