Fig. 17.—Nerve-cell from the anterior gray substance of the spinal cord of a calf magnified 600. a, the axis cylinder; b, the branched process. The neuroplasm is represented as distinctly fibrillated, with granular substance interspersed. Nucleus and nucleolus very distinct.
121. Such is a general description of the nerve-cell as it is seen in various places, and under various modes of preparation. How much is due to preparation we cannot positively say. While we always discover fibrine in the blood after it is withdrawn from the vessels, we know that fibrine as such does not exist in the circulating blood. And if neurine is a semi-liquid substance, we may doubt whether in the living cell it is fibrillated. Doubts have been thrown even on the normal existence of the granular substance, which has been attributed to coagulation. Thus we know that the nucleus of the white blood-corpuscle appears perfectly homogeneous until subjected to heat, yet at a certain temperature (86° F.) it assumes the aspect of a fine network. Haeckel observed the hyaline substance of the neurine in crayfish become troubled and changed directly any fluid except its own blood-serum came in contact with it. Leydig noticed the transparent ganglion of a living Daphnia become darker and darker as the animal died; and I saw something like this, after prolonged struggles of a Daphnia to escape from a thread in which its leg was entangled. Charles Robin, indeed, asserts that the passage from the hyaline to the finely granulated state is a characteristic of the dying cell.[141] On the other hand, it should be noted that Max Schultze describes a fibrillated appearance in cells just removed from the living animal, and placed in serum.
When, therefore, one observer describes the neuroplasm as being clear as water, another as finely granular, and a third as fibrillated, we must conclude that the observations refer to cells, 1°, under different states of vitalization, or, 2°, under different modes of preparation. On the first head we note that some nerve-cells are so perishable that Trinchese declares he could find no cells in the ganglia of a cuttlefish which had been dead twenty-four hours, although they were abundant in one recently killed.[142] On the second head we note that the changes wrought by modes of preparation cannot be left out of consideration. Auerbach notices that the cells and fibres apparent in the plexus myentericus after an acid has been applied, cannot be detected before that application—nothing is visible but a pale gelatinous network, with here and there knots of a paler hue; and I remember my surprise on examining the fresh spinal cord of a duck-embryo, and finding no trace of cells such as I had that very morning seen in the cord of a chick of earlier date, but which had been soaked in weak bichromate of potash. Now we have excellent grounds for believing that in both cases these organites were present, and that it was the reagent which disclosed their presence in the chick; and so in other cases we must ask whether the forms which appear under a given mode of preparation are simply unmasked, or are in truth produced by the reagent? This question we can rarely answer.
If one of the very large cells be taken from the ganglion of a living mollusc, and be gently pressed till it bursts, the discharged contents will be seen to be of a hyaline viscid substance, with fine granules but no trace of fibres. Yet we must not rashly generalize from this, and declare that in the vertebrate cells the substance is not also fibrillated. As a good deal of speculation rests on the assumption of the fibrillated cell-contents, I have thought it worth while to note the uncertainty which hovers round it.
122. Among the uncertainties must be reckoned the question as to the cell-processes. The existence of apolar and unipolar cells is flatly denied by many writers, who assert that the appearances are due to the fragility of the processes. Fragile the processes are, and evidence of their having been broken off meet us in every preparation; but the denial of apolar and unipolar cells seems to me only an example of the tendency to substitute hypothesis for observation (§ [114]). The “postulate” which some seem to regard as a “necessity of thought” that every nerve-cell shall have at least two fibres, one ingoing, the other outgoing, is allowed to override the plain evidence.[143] It originated in the fact first noticed by Wagner and Charles Robin that certain cells in the spinal ganglia of fishes are bipolar. The fact was rapidly generalized, in spite of its not being verified in other places; the generalization was accepted because (by a strange process of reasoning running counter to all physiological knowledge) it was thought to furnish an elementary illustration of the reflex process. As the centre had its ingoing and outgoing nerve, so the cell was held to be a centre “writ small,” and required its two fibres, No one paused to ask, how a cell placed in the track of an ingoing nerve could fulfil this office of a reflex centre; no one supposed that the portion of the sensory fibre which continued its course, after the interruption of the cell, was a motor fibre.
What does Observation teach? It teaches that at first all nerve-cells are apolar. Even in the cortex of the cerebrum, where (unless we include the nuclei and grain-like corpuscles under cells) all the cells are finally multipolar, there is not one which has a process, up to the seventh or eighth day of incubation (in the chick); from that day, and onwards, cells with one process appear; later on, cells with two, and later still, with three. By this time all the apolar cells have disappeared. They may therefore be regarded as cells in their infancy. However that may be, we must accept the fact that apolar cells exist; whether they can co-operate in neural functions, is a question which must be decided after the mode of operation of cells is placed beyond a doubt.
123. If apolar cells are embryonic forms of cells which afterwards become multipolar, this interpretation will not suffice for the unipolar cells. They are not only abundant, but are mature forms in some organs, and in some animals; though in some organs they may truly be regarded as embryonic. Thus in the human embryo up to the fourth month all the cells of the spinal cord are said to be unipolar,[144] later on they become multipolar. But in birds, rabbits, dogs, and even man, the cells in the spinal ganglia are mainly (if not wholly) unipolar;[145] nor is there any difficulty in observing the same fact in the œsophageal ganglia of molluscs (see [Fig. 22]).
Such are the observations. They have indeed been forced into agreement with the bipolar postulate, by the assumption that the single process branches into two, one afferent, the other efferent.[146] But before making observation thus pliant to suit hypothesis, it would be well to look more closely into the evidence for the hypothesis itself. For my own part, I fail to see the justification of the postulate; whereas the existence of unipolar cells is an observation which has been amply verified.