“In our conceptions and reasonings regarding the forces of nature, we perpetually make use of symbols which, whenever they possess a high representative value we dignify with the name of theories. Thus, prompted by certain analogies, we ascribe electrical phenomena to the action of a peculiar fluid, sometimes flowing, sometimes at rest. Such conceptions have their advantages and their disadvantages; they afford peaceful lodging to the intellect for a time, but they also circumscribe it, and by-and-by, when the mind has grown too large for its lodging, it often finds difficulty in breaking down the walls of what has become its prison instead of its home.”
In the same vein was the remark of Michael Faraday:—“I cannot but doubt that he who as a mere philosopher has most power of penetrating the secrets of nature, and guessing by hypothesis at her mode of working, will also be most careful for his own safe progress and that of others, to distinguish the knowledge which consists of assumption, by which I mean theory and hypothesis, from that which is the knowledge of facts and laws.”
He once wrote a letter on ray-vibrations to Mr. Richard Phillips; at its close he said:—“I think it likely that I have made many mistakes in the preceding pages, for even to myself my ideas on this point appear only as the shadow of a speculation, or as one of those impressions on the mind which are allowable for a time as guides to thought and research. He who labors in experimental inquiries, knows how numerous these are, and how often their apparent fitness and beauty vanish before the progress and development of real natural truth.”
“Summing up, then,” says Professor William Stanley Jevons, in “Principles of Science,” “it would seem as if the mind of the great discoverer must combine almost contradictory attributes. He must be fertile in theories and hypotheses, and yet full of facts and precise results of experience. He must entertain the feeblest analogies, and the merest guesses at truth, and yet he must hold them worthless until they are verified in experiment. When there are any grounds of probability he must hold tenaciously to an old opinion, and yet he must be prepared at any moment to relinquish it when a single clear contradictory fact is encountered. ‘The philosopher,’ says Faraday, ‘should be a man willing to listen to every suggestion, but determined to judge for himself. He should not be biassed by appearances; have no favorite hypotheses; be of no school; and in doctrine have no master. He should not be a respecter of persons, but of things. Truth should be his primary object. If to these qualities be added industry, he may indeed hope to walk within the veil of the temple of nature.’”
Character, no less than mind of the highest order, ever distinguishes the great researcher. Says Professor Tyndall:—“Those who are unacquainted with the details of scientific investigation, have no idea of the amount of labor expended on the determination of those numbers on which important calculations or inferences depend. They have no idea of the patience shown by a Berzelius in determining atomic weights; by a Regnault in determining co-efficients of expansion; or of a Joule in determining the mechanical equivalent of heat. There is a morality brought to bear upon such matters, which, in point of severity, is probably without a parallel in any other domain of intellectual action.”
Surely there was a union of the highest character and of consummate ability in Stas, the Belgian chemist, who eliminated from his chemicals every trace of that pervasive element, sodium, so thoroughly, that even its spectroscopic detection was impossible.
A Word for Discursiveness.
The greatest man of science that England has given to the world was Sir Isaac Newton, second only to him was Dr. Thomas Young, who established the wave-theory of light, who deciphered Egyptian hieroglyphics with marvelous skill, and was withal an accomplished physician. In 1801 he was appointed to the professorship of natural philosophy in the Royal Institution, London, founded in 1800 by Benjamin Thompson, Count Rumford, a native of Woburn, Massachusetts. When Dr. Young died, Davies Gilbert, president of the Royal Society, delivered a commemorative address in the course of which he declared that in Young’s opinion it is probably most advantageous to mankind that the researches of some inquirers should be concentrated within a given compass, but that others should pass more rapidly through a wider range. He believed that the faculties of the mind were more exercised, and probably rendered stronger, by going beyond the rudiments, and overcoming the great elementary difficulties, of a variety of studies, than by employing the same number of hours in any one pursuit—that the doctrine of the division of labor, however applicable to material product, was not so to intellect; and that it went to reduce the dignity of man in the scale of rational existences. He thought it impossible to foresee the capabilities of improvement in any science, so much of accident having led to the most important discoveries, that no man could say what might be the comparative advantage of any one study rather than of another; though he would have scarcely recommended the plan of his own course as a model to others, he still was satisfied in the method which he had pursued.