Air bubbles rising in oil.

Bigness Needs Strong Materials.

Now we begin to realize how great is the boon of cheap steel, much stronger than iron, of which ships and engines may be built bigger than at any earlier period. Steel of great strength has made feasible, too, the Eiffel Tower in Paris, nearly a thousand feet tall, the office-buildings of New York thirty stories in height, and steel will soon cross the St. Lawrence near Quebec with a single span of 1,800 feet. In 1904, at Schenectady, N. Y., the New York Central & Hudson River Railroad Company began comparisons between an [electric locomotive] of 201,000 pounds, shown opposite page 476, and a steam locomotive so huge that with its tender it weighed no less than 342,000 pounds. Steel, as the material of engines and tools of all sorts enables us to build in dimensions bolder than ever before; or, if old dimensions are not surpassed, we are free to employ velocities quite out of the question with iron.

It is a long time since adventurers first entrusted themselves to floating logs, afterward tied together as rafts, and slowly improved until they became boats moved by paddles or oars. Thus far little else than failure has attended the inventors who have sought to navigate the air as easily as river, lake or sea. A stride toward success was however distinctly taken when the strongest known alloys, those of steel and nickel, gave the aeronaut a stronger boiler, pound for pound, than he ever had before, with wings lighter in proportion to their power than those of earlier experiments. Let the burden of his apparatus be further reduced, and by one-half; then we may expect him to reign in the air as securely as the sea-gull. The original resource of the aeronaut, his balloon, suffers from a permanent disability. Air has but 1770 the specific gravity of water, so that a balloon must be enormous to have any carrying capacity worth while. And what would become of a balloon, its rudder and ropes, if caught in a hurricane of eighty miles an hour?

A Store Continues the Lesson.

Let the aeronaut continue his wistful and envious gaze at the birds in the sky while we turn our attention to mother earth, there to note how every day trade surrounds us with further illustrations of the law of size, of the gains which may attend bigness. We enter a department store, displaying a varied stock of foods, clothing, shoes, furniture, and so on. As we cast our eyes about its counters, shelves, and floor we see cans of vegetables, fruit, and fish; jars of olives and vinegar; boxes of rice, soap and crackers; paper sacks of flour and meal. Outside the door are piled kegs, barrels, and packing cases. Plainly the cost of paper, glass, tin, and lumber for packages must levy a large tax on retailing. Once more is recalled our old lesson with the inch-cubes; the bigger a jar, box, or sack, the less material it needs in proportion to its capacity. Wholesale packers of merchandise save money as they form packages of the largest size. The contents of each box, crate, and sack tell the familiar story once again. The coffee is ground from the bean that it may be readily infused in the coffee-pot; wheat is reduced to flour, oats to fine meal, that they may be quickly cooked; sugar is crushed that it may rapidly dissolve in the tea cup. This very task began long ago with the mastication of food by the teeth, diminishing the size of morsels while moistening them for digestion before they reached the stomach.

Summer Holiday Notes.

During a visit to the country one summer, we observed new examples of our familiar rule. When we compared the dimensions of a small sectional cabin with those of a large house, we saw the principal reason why the cabin was hard to keep cool in July, and hard to keep warm in December. We noticed tasks which depended upon giving wood, cloth or other material as much surface as possible, whether new forms were like old ones or not. A neighboring sawmill was busy cutting up logs into thin boards; these were piled in open tiers, so that the drying winds might speedily finish their work. In the same way we noted a laundress spreading out by itself each table-cloth and apron fully to catch the wind, instead of leaving the linen as a solid heap in her basket, where only the edges would be dried. When the farm-hands went haymaking they followed the same rule; they tedded out their gavels to give them the utmost supply of sun and air; when all was as dry as a bone they reared a haycock of compact form so as to expose the least possible surface to rain and snow.

Dimensions Molecular.

So much for things to be observed in a country ramble, in a city store, or at the docks of a busy port. Apart from all such things is a world unseen, standing beneath the visible world, and equally worthy of study. Here knowledge is based upon inferences, upon what lawyers call circumstantial evidence. The chemist by means purely indirect studies the molecule and the atom, objects that far elude his microscope. A molecule is a part of a compound so small that it cannot be divided without becoming something simpler. Thus a sugar molecule is made up of carbon, hydrogen, and oxygen atoms; were these disjoined, the sugar, as such, would cease to be, just as a brick wall no longer exists when its bricks and their several slices of mortar are parted from one another as separate units. Small as molecules are they have not escaped the measuring rod of the physicist. Some years ago Lord Kelvin experimentally arrived at the estimate that the average molecule has a diameter of 1760,000,000 inch. Such molecules when compared with masses of like form, and of a diameter of one inch; have 760,000,000 times as much surface. In the transmission of motion, with adhesion in play, surfaces count for much, as when a wheel in motion is brought into contact with a wheel at rest. Here may be an explanation of why electricity is conducted through a wire with a velocity far exceeding any speed we can mechanically impress upon the metal, because the molecules concerned have incomparably more surface than the wire as a mass.