In the second place, adaptations due to organic machineries of this kind differ in another all-important respect from those due to a summation of adaptive characters which are already present and already varying round a specific mean. The latter depend for their summation upon the fact—not merely, as just stated, that they are already present, already varying round a specific mean, and therefore owe their progressive evolution to free intercrossing, but also—that they admit of very different degrees of adaptation. It is only because the degree of adaptation in generation B is superior to that in generation A that gradual improvement in respect of adaptation is here possible. In the case of protective resemblance, for example, a very imperfect and merely accidental resemblance to a leaf, to another insect, &c., may at the first start have conferred a sufficient degree of adaptive imitation to count for something in the struggle for life; and, if so, the basis would be given for a progressive building up by natural selection of structures and colours in ever-advancing degrees of adaptive resemblance. There is here no necessity to suppose—nor in point of fact is it ever supposed, since the supposition would involve nothing short of a miracle—that such extreme perfection in this respect as we now so frequently admire has originated suddenly in a single generation, as a collective variation of a congenital kind affecting simultaneously a large proportional number of individuals. But in the case of a reflex mechanism—which may involve even greater marvels of adaptive adjustment, and all the parts of which must occur in the same individuals to be of any use—it is necessary to suppose some such sudden and collective origin in some very high degree of efficiency, if natural selection has been the only principle concerned in afterwards perfecting the mechanism. For it is self-evident that a reflex action, from its very nature, cannot admit of any great differences in its degrees of adaptation: if it is to work at all, so as to count for anything in the struggle for life, it must already be given in a state of working efficiency. So that, unless we invoke either the doctrine of "prophetic types" or the theory of sudden creations, I confess I do not see how we are to explain either the origin, or the development, of a reflex mechanism by means of natural selection alone.
Lastly, in the third place, even when reflex mechanisms have been fully formed, it is often beyond the power of sober credence to believe that they now are, or ever can have been, of selective value in the struggle for existence, as I will show further on. And such cases go to fortify the preceding argument. For if not conceivably of selective value even when completely evolved, much less can they conceivably have been so through all the stages of their complex evolution back to their very origin. Therefore, supposing for the present that there are such cases of reflex action in nature, neither their origin nor their development can conceivably have been due to natural selection alone. The Lamarckian factors, however, have no reference to degrees of adaptation, any more than they have to degrees of complexity. No question of value, as selective or otherwise, can obtain in their case: neither in their case does any difficulty obtain as regards the co-adaptation of severally useless parts.
Now, if all these distinctions between the Darwinian and Lamarckian principles are valid—and I cannot see any possibility of doubt upon this point—strong evidence in favour of the latter would be furnished by cases (if any occur) where structures, actions, instincts, &c., although of some adaptive value, are nevertheless plainly not of selective value. According to the ultra-Darwinian theory, no such cases ought ever to occur: according to the theory of Darwin himself, they ought frequently to occur. Therefore a good test, or criterion, as between these different theories of organic evolution is furnished by putting the simple question of fact—Can we, or can we not, show that there are cases of adaptation where the degree of adaptation is so small as to be incompatible with the supposition of its presenting a selective value? And if we put the wider question—Are there any cases where the co-adaptation of severally useless parts has been brought about, when even the resulting whole does not present a selective value?—then, of course, we impose a still more rigid test.
Well, notwithstanding the difficulty of proving such a negative as the absence of natural selection where adaptive development is concerned, I believe that there are cases which conform to both these tests simultaneously; and, moreover, that they are to be found in most abundance where the theory of use-inheritance would most expect them to occur—namely, in the province of reflex action. For the very essence of this theory is the doctrine, that constantly associated use of the same parts for the performance of the same action will progressively organize those parts into a reflex mechanism—no matter how high a degree of co-adaptation may thus be reached on the one hand, or how low a degree of utilitarian value on the other.
Having now stated the general or abstract principles which I regard as constituting a defence of the Lamarckian factors, so far as this admits of being raised on grounds of physiology, we will now consider a few concrete cases by way of illustration. It is needless to multiply such cases for the mere purpose of illustration. For, on reading those here given, every physiologist will at once perceive that they might be added to indefinitely. The point to observe is, the relation in which these samples of reflex action stand to the general principles in question; for there is nothing unusual in the samples themselves. On the contrary, they are chosen because they are fairly typical of the phenomena of reflex action in general.
In our own organization there is a reflex mechanism which ensures the prompt withdrawal of the legs from any source of irritation supplied to the feet. For instance, even after a man has broken his spine in such a manner as totally to interrupt the functional continuity of his spinal cord and brain, the reflex mechanism in question will continue to retract his legs when his feet are stimulated by a touch, a burn, &c. This responsive action is clearly an adaptive action, and, as the man neither feels the stimulation nor the resulting movement, it is as clearly a reflex action. The question now is as to the mode of its origin and development.
I will not here dwell upon the argument from co-adaptation, because this may be done more effectually in the case of more complicated reflex actions, but will ask whether we can reasonably hold that this particular reflex action—comparatively simple though it is—has ever been of selective value to the human species, or to the ancestors thereof? Even in its present fully-formed condition it is fairly questionable whether it is of any adaptive value at all. The movement performed is no doubt an adaptive movement; but is there any occasion upon which the reflex mechanism concerned therein can ever have been of adaptive use? Until a man's legs have been paralyzed as to their voluntary motion, he will always promptly withdraw his feet from any injurious source of irritation by means of his conscious intelligence. True, the reflex mechanism secures an almost inappreciable saving in the time of response to a stimulus, as compared with the time required for response by an act of will; but the difference is so exceedingly small, that we can hardly suppose the saving of it in this particular case to be a matter of any adaptive—much less selective—importance. Nor is it more easy to suppose that the reflex mechanism has been developed by natural selection for the purpose of replacing voluntary action when the latter has been destroyed or suspended by grave spinal injury, paralysis, coma, or even ordinary sleep. In short, even if for the sake of argument we allow it to be conceivable that any single human being, ape, or still more distant ancestor, has ever owed its life to the possession of this mechanism, we may still be certain that not one in a million can have done so. And, if this is the case with regard to the mechanism as now fully constructed, still more must it have been the case with regard to all the previous stages of construction. For here, without elaborating the point, it would appear that a process of construction by survival of the fittest alone is incomprehensible.
On the other hand, of course, the theory of use-inheritance furnishes a fully intelligible—whether or not a true—explanation. For those nerve-centres in the spinal cord which co-ordinate the muscles required for retracting the feet are the centres used by the will for this purpose. And, by hypothesis, the frequent use of them for this purpose under circumstances of stimulation which render the muscular response appropriate, will eventually establish an organic connexion between such response and the kind of stimulation to which it is appropriate—even though there be no utilitarian reason for its establishment[43]. To invert a phrase of Aristotle, we do not frequently use this mechanism because we have it (seeing that in our normal condition there is no necessity for such use); but, by hypothesis, we have it because we have frequently used its several elements in appropriate combination.
I will adduce but one further example in illustration of these general principles—passing at once from the foregoing case of comparative simplicity to one of extreme complexity.