"J'ai réussi surtout pour le Lepidium sativum cultivé en 1888; j'ai obtenu pour la même plante des résultats plus nets encore dans la culture de 1889, entreprise en semant les graines récoltées avec soin des pots de l'année précédente et traitées exactement de la même façon[76]."

Here, it will be observed, there was no selection; and therefore the increased hereditary effect in the second generation must apparently be ascribed to a continuance of influence exercised by somatic tissues on germinal elements; for at the time when the changes were produced no seed had been formed. In other words, the accumulated change, like the initial change, would seem to have been exclusively of somatogenetic origin; and yet it so influenced the qualities of the seed (as this was afterwards formed), that the augmented changes were transmitted to the next generation, part for part, as the lesser changes had occurred in the preceding generation. "This experiment, therefore, like Professor Buckman's, shows that the alteration of the tissues was carried on in the second generation from the point gained in the first. In both cases no germ-plasm (in the germ-cells) existed at the time during which the alterations arose, as they were confined to the vegetative system; and in the case of the parsnips and carrots, being biennials no germ-cells are produced till the second year has arrived[77]."

Once more, Professor Bailey remarks:—

"Squashes often show remarkable differences when grown upon different soils; and these differences can sometimes be perpetuated for a time by seeds. The writer has produced, from the same parent, squashes so dissimilar, through the simple agency of a change of soil in one season, that they might readily be taken for distinct varieties. Peas are known to vary in the same manner. The seeds of a row of peas of the same kind, last year gave the writer marked variations due to differences of soil.... Pea-growers characterize soils as 'good' and 'viney.' Upon the latter sort the plants run to vine at the expense of the fruit, and their offspring for two or three generations have the same tendency[78]."

I think these several cases are enough to show that, while the Weismannian assumption as to the seeming transmission of somatogenetic characters being restricted to the lowest kinds of plants is purely gratuitous, there is no small amount of evidence to the contrary—or evidence which seems to prove that a similar transmission occurs likewise in the higher plants. And no doubt many additional cases might be advanced by any one who is well read in the literature of economic botany.

It appears to me that the only answer to such cases would be furnished by supposing that the hereditary changes are due to an alteration of the residual "germ-plasm" in the wild seed, when this is first exposed to the changed conditions of life, due to its growth in a strange kind of soil—e.g. while germinating in an unusual kind of earth for producing the first generation. But this would be going a long way to save an hypothesis. In case, however, it should now be suggested, I may remark that it would be negatived by the following facts.[79]

In the first place, an endless number of cases might be quoted where somatogenetic changes thus produced by changed conditions of life are not hereditary. Therefore, in all these cases it is certainly not the "germ-plasm" that is affected. In other words, there can be no question that somatogenetic changes of the kinds above mentioned do very readily admit of being produced in the first generation by changes of soil, altitude, &c. And that somatogenetic changes thus produced should not always—or even generally—prove themselves to be hereditary from the first moment of their occurrence, is no more than any theory of heredity would expect. Indeed, looking to the known potency of reversion, the wonder is that in any case such changes should become hereditary in a single generation. On the other hand, there is no reason to imagine that the hypothetical germ-plasm—howsoever unstable we may suppose it to be—can admit of being directly affected by a change of soil in a single generation. For, on this view, it must presumably be chiefly affected during the short time that the seed is germinating; and during that time the changed conditions can scarcely be conceived as having any points of attack, so to speak, upon the residual germ-plasm. There are no roots on which the change of soil can make itself perceptible, nor any stem and leaves on which the change of atmosphere can operate. Yet the changed condition's may produce hereditary modifications in any parts of the plant, which are not only precisely analogous to non-hereditary changes similarly produced in the somatic tissues of innumerable other plants, but are always of precisely the same kind in the same lot of plants that are affected. When all the radishes grown from wild seed in Paris, for instance, varied in the direction of rotundity and dark colour, while those grown in the country presented the opposite characters, we can well understand the facts as due to an entire season's action upon the whole of the growing plant, with the result that all the changes produced in each set of plants were similar—just as in the cases where similarly "climatic" modifications are not hereditary, and therefore unquestionably due to changed conditions acting on roots, stems, leaves, or flowers, as the case may be. On the other hand, it is not thus intelligible that during the short time of germination the changed conditions should effect a re-shuffling (or any other modification) of the "germ-plasm" in the seeds—and this in such a manner that the effect on the residual germ-plasm reserved for future generations is precisely similar to that produced on the somatic tissues of the developing embryo.

In the second place, as we have seen, in some of the foregoing cases the changes were produced months—and even years—before the seeds of the first germination were formed. Therefore the hereditary effect, if subsequent to the period of embryonic germination, must have been produced on germ-plasm as this occurs diffused through the somatic tissues. But, if so, we shall have to suppose that such germ-plasm is afterwards gathered in the seeds when these are subsequently formed. This supposition, however, would be radically opposed to Weismann's theory of heredity: nor do I know of any other theory with which it would be reconcilable, save such as entertain the possibility of the Lamarckian factors.

Lastly, in the third place, I deem the following considerations of the highest importance:—

"As other instances in which peculiar structures are now hereditary may be mentioned aquatic plants and those producing subterraneous stems. Whether they be dicotyledons or monocotyledons, there is a fundamental agreement in the anatomy of the roots and stem of aquatic plants, and, in many cases, of the leaves as well. Such has hitherto been attributed to the aquatic habit. The inference or deduction was, of course, based upon innumerable coincidences; the water being supposed to be the direct cause of the degenerate structures, which are hereditary and characteristic of such plants in the wild state. M. Costantin has, however, verified this deduction, by making terrestrial and aerial stems to grow underground and in water: the structures at once began to assume the subterranean or aquatic type, as the case might be; and, conversely, aquatic plants made to grow upon land at once began to assume the terrestrial type of structure, while analogous results followed changes from a subterranean to an aerial position, and vice versa."