Here is another general fact, also first noticed by Darwin, and one which he experiences some difficulty an explaining on the theory of natural selection. He says:—
In travelling from north to south over a continent, we generally meet at successive intervals with closely-allied or representative species, evidently filling the same place in the economy of the land. These representative species often meet and interlock, and as one becomes rarer and rarer, the other becomes more and more frequent, till the one replaces the other. But if we compare these species where they intermingle, they are generally as absolutely distinct from each other in every detail of structure as are specimens taken from the metropolis of each.... In the intermediate region, having intermediate conditions of life, why do we not now find closely-linking intermediate varieties? This difficulty for a long time quite confounded me. But I think it can in large part be explained[23].
His explanation is that, "as the neutral territory between two representative species is generally narrow in comparison with the territory proper to each, ... and as varieties do not essentially differ from species, the same rule will probably apply to both; and, therefore, if we take a varying species inhabiting a very large area, we shall have to adapt two varieties to two large areas, and a third variety to a narrow intermediate zone." It is hence argued that this third or intermediate variety, on account of its existing in lesser numbers, will probably be soon overrun and exterminated by the larger populations on either side of it. But how is it possible "to adapt two varieties to two large areas, and a third [transitional] variety to a narrow intermediate zone," in the face of free intercrossing on a continuous area? Let A, B, and C represent the three areas in question. According to the argument, variety A passes first into variety B, and then into variety C, while variety B eventually becomes exterminated by the inroads both from A and C. But how can all this have taken place with nothing to prevent intercrossing throughout the entire area A, B, C? I confess that to me it seems this argument can only hold on the supposition that the analogy between varieties and species extends to the reproductive system; or, in a sense more absolute than the argument has in view, that "varieties do not essentially differ from the species" which they afterwards form, but from the first show some degree of infertility towards one another. And, if so, we have of course to do with the principles of physiological selection.
That in all such cases of species-distribution these principles have played an important part in the species-formation, appears to be rendered further probable from the suddenness of transition on the area occupied by contiguous species, as well as from the completeness of it—i. e. the absence of connecting forms. For these facts combine to testify that the transition was originally due to that particular change in the reproductive systems of the forms concerned, which still enables those forms to "interlock" without intercrossing. On the other hand, neither of these facts appears to me compatible with the theory of species-formation by natural selection alone.
But this leads us to another general fact, also mentioned by Darwin, and well recognized by all naturalists, namely, that closely allied species, or species differing from one another in trivial details, usually occupy contiguous areas; or, conversely stated, that contiguity of geographical position is favourable to the appearance of species closely allied to one another. Now, the large body of facts to which I here allude, but need not at present specify, appear to me to constitute one of the strongest of all my arguments in favour of physiological selection. Take, for instance, a large continental area, and follow across it a chain of species, each link of which differs from those on either side of it by the minute and trivial distinctions of a secondary kind, but all the links of which differ from one another in respect of the primary distinction, so that no one member of the series is perfectly fertile with any other member. Can it be supposed that in every case this constant primary distinction has been superinduced by the secondary distinctions, distributed as they are over different parts of all these kindred organisms, and yet nowhere presenting any but a trifling amount of morphological change?
For my own part, I cannot believe—any more than Darwin could believe—that all these numerous, diverse, and trivial changes have always had the accidental effect of inducing the same peculiar change in the reproductive system, and so producing it without any reference to the process of specific divergence. Nor can I believe, as Darwin incidentally and provisionally suggested, that prolonged exposure to uniform conditions of life have so generally induced an equally meaningless result. I can only believe that all the closely allied species inhabiting our supposed continent, and differing from one another in so many and such divers points of small detail, are merely so many records of the fact that selective fertility has arisen among their ancestry, and has thus given as many opportunities for the occurrence of morphological differentiations as it has furnished cases of efficient isolation. Of course, I do not deny that many, or probably most, of these trivial morphological differentiations have been produced by natural selection on account of their utility: I merely deny that they could have been so produced on this common area, but for the sexual isolation with which every distinct set of them is now found to be associated.
Evidence from Topographical Distribution of Species.
By topographical distribution I mean the distribution of organisms with reference to comparatively small areas, as distinguished from larger regions with reference to which the term geographical distribution is appropriate.
It will be at once apparent that a study of the topographical distribution of organic types is of even more importance for us than a study of their geographical distribution. For while the former study is conducted, as it were, with a low power of our observing microscope, the latter is conducted with a high power. The larger facts of geographical distribution yield, indeed, all the general characters which we might expect them to yield, on the theory that divergence of specific types on common areas has been in chief part determined by physiological conditions. But for the purpose of testing this theory in a still more exacting manner, it is of the first importance to consider the more detailed facts of topographical distribution, since we here come to closer quarters with the problem of specific differentiation. Therefore, as we have already considered this problem under the most general points of view, we will now consider it under more special points of view.