One point, however, is definitely attained. It is that the proposition, which further back we designated paradoxical, is rigorously true, A constant cause of variation, however insignificant it may be, changes the uniformity [of type] little by little, and diversifies it ad infinitum. From the homogeneous, left to itself, only the homogeneous can proceed; but if there be a slight disturbance ["léger ferment">[ in the homogeneous, the homogeneity will be invaded at a single point, differentiation will penetrate the whole, and, after a time—it may be an infinite time—the differentiation will have disintegrated it altogether.

In other words, the "Law," which Delbœuf has formulated on mathematical grounds, and with express reference to the question of segregate breeding, proves that, no matter how infinitesimally small the difference may be between the average qualities of an isolated section of a species compared with the average qualities of the rest of that species, if the isolation continues sufficiently long, differentiation of specific type is necessarily bound to ensue. But, to make this mathematical law biologically complete, it ought to be added that the time required for the change of type to supervene (supposing apogamy to be the only agent of change) will be governed by the range of individual variability which the species in question presents. A highly stable species (such as the Goose) might require an immensely long time for apogamy alone to produce any change of type in an isolated portion of the species, while a highly variable species (such as the Ruff) would rapidly change in any portion that might be indiscriminately isolated. It was in order to recognize this additional and very important factor that I chose the name Independent Variability whereby to designate the diversifying influence of merely indiscriminate isolation, or apogamy. Later on Mr. Gulick published his elaborate papers upon the divergence of type under all kinds of isolation; and retained my term Independent, but changed Variability into Generation. I point this out merely for the sake of remarking that his Independent Generation is exactly the same principle as my Independent Variability, and Delbœuf's Mathematical Law.

Now, while I fully agree with Mons. Giard where he says, in the introductory lecture of his course on The Factors of Evolution[7], that sufficient attention has not been hitherto given by naturalists to this important factor of organic evolution (apogamy), I think I have shown that among those naturalists who have considered it there is a sufficient amount of agreement. Per contra, I have to note the opinion of Mr. Wallace, who steadily maintains the impossibility of any cause other than natural selection (i.e. one of the forms of homogamy) having been concerned in the evolution of species. But at present it is enough to remark that even Professor Ray Lankester—whose leanings of late years have been to the side of ultra-Darwinism, and who is therefore disposed to agree with Mr. Wallace wherever this is logically possible—even Professor Ray Lankester observes:—

Mr. Wallace does not, in my judgement, give sufficient grounds for rejecting the proposition which he indicates as the main point of Mr. Gulick's valuable essay on Divergent Evolution through Cumulative Segregation. Mr. Gulick's idea is that ... no two portions of a species possess exactly the same average character, and the initial differences will, if the individuals of the two groups are kept from intercrossing, assert themselves continuously by heredity in such a way as to ensure an increasing divergence of the forms belonging to the two groups, amounting to what is recognized as specific distinction. Mr. Gulick's idea is simply the recognition of a permanence or persistency in heredity, which, caeteris paribus, gives a twist or direction to the variations of the descendants of one individual as compared with the descendants of another[8].

Now we have seen that "Mr. Gulick's idea," although independently conceived by him, had been several times propounded before; and it is partly implicated in more than one passage of the Origin of Species, where free intercrossing, or the absence of isolation, is alluded to as maintaining the constancy of a specific type[9]. Moreover, it is still more fully recognized in the last edition of the Variation of Animals and Plants, where a paragraph is added for the purpose of sanctioning the principle in the imperfect form that it was stated by Weismann[10]. Nevertheless, to Mr. Gulick belongs the credit, not only of having been the first to conceive (though the last to publish) the "idea" in question, and of having stated it with greater fullness than anybody else; but still more of having verified its importance as a factor of organic evolution.

For, in point of fact, Mr. Gulick was led to his recognition of the principle in question, not by any deductive reasoning from general principles, but by his own particular and detailed observations of the land mollusca of the Sandwich Islands. Here there are an immense number of varieties belonging to several genera; but every variety is restricted, not merely to the same island, but actually to the same valley. Moreover, on tracing this fauna from valley to valley, it is apparent that a slight variation in the occupants of valley 2 as compared with those of the adjacent valley 1, becomes more pronounced in the next—valley 3, still more so in 4, &c., &c. Thus it was possible, as Mr. Gulick says, roughly to estimate the amount of divergence between the occupants of any two given valleys by measuring the number of miles between them.

As already stated, I have myself examined his wonderful collection of shells, together with a topographical map of the district; and therefore I am in a position to testify to the great value of Mr. Gulick's work in this connexion, as in that of the utility question previously considered. The variations, which affect scores of species, and themselves eventually run into fully specific distinctions, are all more or less finely graduated as they pass from one isolated region to the next; and they have reference to changes of form and colour, which in no one case presents any appearance of utility. Therefore—and especially in view of the fact that, as far as he could ascertain, the environment in the different valleys was essentially the same—no one who examines this collection can wonder that Mr. Gulick attributes the results which he has observed to the influence of apogamy alone, without any reference to utility or natural selection.

To this solid array of remarkable facts Mr. Wallace has nothing further to oppose than his customary appeal to the argument from ignorance, grounded on the usual assumption that no principle other than natural selection can be responsible for even the minutest changes of form or colour. For my own part, I must confess that I have never been so deeply impressed by the dominating influence of the a priori method as I was on reading Mr. Wallace's criticism of Mr. Gulick's paper, after having seen the material on which this paper is founded. To argue that every one of some twenty contiguous valleys in the area of the same small island must necessarily present such differences of environment that all the shells in each are differently modified thereby, while in no one out of the hundreds of cases of modification in minute respects of form and colour can any human being suggest an adaptive reason therefor—to argue thus is merely to affirm an intrinsically improbable dogma in the presence of a great and consistent array of opposing facts.

I have laid special stress on this particular case of the Sandwich Islands' mollusca, because the fifteen years of labour which Mr. Gulick has devoted to their exhaustive working out have yielded results more complete and suggestive than any which so far have been forthcoming with regard to the effects of isolation in divergent evolution. But, if space permitted, it would be easy to present abundance of additional facts from other sources, all bearing to the same conclusion—namely, that as a matter of direct observation, no less than of general reasoning, any unprejudiced mind will concede to the principle of indiscriminate isolation an important share in the origination of organic types. For as indiscriminate isolation is thus seen sooner or later to become discriminate, and as we have already seen that discriminate isolation is a necessary condition to all or any modification, we can only conclude that isolation in both its kinds takes rank with heredity and variability as one of the three basal principles of organic evolution.