The theory of evolution supposes that hereditary characters admit of being slowly modified wherever their modification will render an organism better suited to a change in its conditions of life. Let us, then, observe the evidence which we have of such adaptive modifications of structure, in cases where the need of such modification is apparent. We may begin by again taking the case of the whales and porpoises. The theory of evolution infers, from the whole structure of these animals, that their progenitors must have been terrestrial quadrupeds of some kind, which gradually became more and more aquatic in their habits. Now the change in the conditions of their life thus brought about would have rendered desirable great modifications of structure. These changes would have begun by affecting the least typical—that is, the least strongly inherited—structures, such as the skin, claws, and teeth. But, as time went on, the adaptation would have extended to more typical structures, until the shape of the body would have become affected by the bones and muscles required for terrestrial locomotion becoming better adapted for aquatic locomotion, and the whole outline of the animal more fish-like in shape. This is the stage which we actually observe in the seals, where the hind legs, although retaining all their typical bones, have become shortened up almost to rudiments, and directed backwards, so as to be of no use for walking, while serving to complete the fish-like taper of the body. (Fig. 2.) But in the whales the modification has gone further than this so that the hind legs have ceased to be apparent externally, and are only represented internally—and even this only in some species—by remnants so rudimentary that it is difficult to make out with certainty the homologies of the bones; moreover, the head and the whole body have become completely fish-like in shape. (Fig. 3.) But profound as are these alterations, they affect only those parts of the organism which it was for the benefit of the organism to have altered, so that it might be adapted to an aquatic mode of existence. Thus the arm, which is used as a fin, still retains the bones of the shoulder, fore-arm, wrist, and fingers, although they are all enclosed in a fin-shaped sack, so as to render them useless for any purpose other than swimming (Fig. 4.) Similarly, the head, although it so closely resembles the head of a fish in shape, still retains the bones of the mammalian skull in their proper anatomical relations to one another; but modified in form so as to offer the least possible resistance to the water. In short, it may be said that all the modifications have been effected with the least possible divergence from the typical mammalian type, which is compatible with securing so perfect an adaptation to a purely aquatic mode of life.

Fig. 2.—Skeleton of Seal, 1/8 nat. size. Drawn from nature (R. Coll. Surg. Mus.).

Fig. 3.—Skeleton of Greenland Whale, 1/100 nat. size. The rudimentary bones of the pelvis are shown on a larger scale in the upper drawing. (From Prof. Flower.)

Now I have chosen the case of the whale and porpoise group, because they offer so extreme an example of profound modification of structure in adaptation to changed conditions of life. But the same thing may be seen in hundreds and hundreds of other cases. For instance, to confine our attention to the arm, not only is the limb modified in the whale for swimming, but in another mammal—the bat—it is modified for flying, by having the fingers enormously elongated and overspread with a membranous web.

Fig. 4.—Paddle of Whale compared with Hand of Man. Drawn from nature (R. Coll. Surg. Mus.).