Fig. 81.—Bones of the foot of four different forms of the perissodactyl type, showing gradual reduction in the number of digits, coupled with a greater consolidation of the bones above the digits. The series reads from right to left. Drawn from nature (Brit. Mus.).
Next, however, a still stronger foot was made by the still further interlocking of the wrist and ankle bones, so that both the first and second rows of them were thus fitted into each other, as well as into the bones of the hand and foot beneath. This further modification is clearly traceable in some of the earlier perissodactyls, and occurs in the majority at the present time. Compare, for example, the greater interlocking and consolidation of these small bones in the Rhinoceros as contrasted with the Elephant (Fig. 81). Moreover, simultaneously with these consolidating improvements in the mechanism of the wrist and ankle joints, or possibly at a somewhat later period, a reduction in the number of digits began to take place. This was a continuation of the policy of consolidating the foot, analogous to the dropping out of the sixth row of small bones in the paddle of Baptanodon. (Fig. 78.) In the pentadactyl plantigrade foot of the early mammals, the first digit, being the shortest, was the first to leave the ground, to dwindle, and finally to disappear. More work being thus thrown on the remaining four, they were strengthened by interlocking with the wrist (or ankle) bones above them, as just mentioned; and also by being brought closer together.
Fig. 82.—Bones of the foot of four different forms of the artiodactyl type, showing gradual reduction of the number of digits, coupled with a greater consolidation of the bones above the digits. The series reads from right to left. Drawn from nature (Brit. Mus.).
The changes which followed I will render in the words of Professor Marsh.
Two kinds of reduction began. One leading to the existing perissodactyl foot, and the other, apparently later, resulting in the artiodactyl type. In the former the axis of the foot remained in the middle of the third digit, as in the pentadactyl foot. [See Fig. 81.] In the latter, it shifted to the outer side of this digit, or between the third and fourth toe. [See Fig. 82.]
In the further reduction of the perissodactyl foot, the fifth digit, being shorter than the remaining three, next left the ground, and gradually disappeared. [Fig. 81 B.] Of the three remaining toes, the middle or axial one was the longest, and retaining its supremacy as greater strength and speed were required, finally assumed the chief support of the foot [Fig. 81 C], while the outer digits left the ground, ceased to be of use, and were lost, except as splint-bones [Fig. 81 D]. The feet of the existing horse shows the best example of this reduction in the Perissodactyls, as it is the most specialized known in the Ungulates [Fig. 81 D].
In the artiodactyl foot, the reduction resulted in the gradual diminution of the two outer of the four remaining toes, the third and fourth doing all the work, and thus increasing in size and power. The fifth digit, for the same reasons as in the perissodactyl foot, first left the ground and became smaller. Next, the second soon followed, and these two gradually ceased to be functional, [and eventually disappeared altogether, as shown in the accompanying drawing of the feet of still existing animals, Fig. 82 B, C, D].
The limb of the modern race-horse is a nearly perfect piece of machinery, especially adapted to great speed on dry, level ground. The limb of an antelope, or deer, is likewise well fitted for rapid motion on a plain, but the foot itself is adapted to rough mountain work as well, and it is to this advantage, in part, that the Artiodactyls owe their present supremacy. The plantigrade pentadactyl foot of the primitive Ungulate—and even the perissodactyl foot that succeeded it—both belong to the past humid period of the world’s history. As the surface of the earth slowly dried up, in the gradual desiccation still in progress, new types of feet became a necessity, and the horse, antelope, and camel were gradually developed, to meet the altered conditions.