Fig. 85.—Hipparion. (New World Pliocene.)

On the other hand, progressive modifications of the artiodactyl feet may be traced geologically up to the different stages presented by living ruminants, in some of which it has proceeded further than in others. For instance, if we compare the pig, the deer, and the camel (Fig. 82), we immediately perceive that the dwindling of the two rudimentary digits has proceeded much further in the case of the deer than in that of the pig, and yet not so far as in that of the camel, seeing that here they have wholly disappeared. Moreover, complementary differences are to be observed in the degree of consolidation presented by the two useful digits. For while in the pig the two foot-bones are still clearly distinguishable throughout their entire length, in the deer, and still more in the camel, their union is more complete, so that they go to constitute a single bone, whose double or compound character is indicated externally only by a slight bifurcation at the base. Nevertheless, if we examine the state of matters in the unborn young of these animals, we find that the two bones in question are still separated throughout their length. and thus precisely resemble what used to be their permanent condition in some of the now fossil species of hoofed mammalia.

Turning next from bones of the limb to other parts of the mammalian skeleton, let us briefly consider the evidence of evolution that is here likewise presented by the vertebral column, the skull, and the teeth.

As regards the vertebral column, if we examine this structure in any of the existing hoofed animals, we find that the bony processes called zygapophyses, which belong to each of the constituent vertebræ, are so arranged that the anterior pair belonging to each vertebra interlocks with the posterior pair belonging to the next vertebra. In this way the whole series of vertebræ are connected together in the form of a chain, which, while admitting of considerable movement laterally, is everywhere guarded against dislocation. But if we examine the skeletons of any ungulates from the lower Eocene deposits, we find that in no case is there any such arrangement to secure interlocking. In all the hoofed mammals of this period the zygapophyses are flat. Now, from this flat condition to the present condition of full interlocking we obtain a complete series of connecting links. In the middle Miocene period we find a group of hoofed animals in which the articulation begins by a slight rounding of the previously flat surfaces: later on this rounding progressively increases, until eventually we get the complete interlocking of the present time.

As regards teeth, and still confining attention to the hoofed mammals, we find that low down in the geological series the teeth present on their grinding surfaces only three simple tubercles. Later on a fourth tubercle is added, and later still there is developed that complicated system of ridges and furrows which is characteristic of these teeth at the present time, and which was produced by manifold and various involutions of the three or four simple tubercles of Eocene and lower Miocene times. In other words, the principle of gradual improvement in the Construction of teeth, which has already been depicted as regards the particular case of the horse-family (Fig. 83), is no less apparent in the pedigree of all the other mammalia, wherever the palæontological history is sufficiently intact to serve as a record at all.

Fig. 86.—Comparative series of Brains. (After Le Conte.) The series reads from above downwards, and represents diagrammatically the brain of a Fish, a Reptile, a Bird, a Mammal, and a Man. In each case the letter A marks a side view, and the letter B a top view. The small italics throughout signify the following homologous parts: m, medulla; cb, cerebellum; op, optic lobes; cr, cerebrum and thalamus; ol, olfactory lobes. The series shows a progressive consolidation and enlargement of the brain in general, and of the cerebrum and cerebellum in particular, which likewise exhibit continually advancing structure in respect of convolution. In the case of Man, these two parts of the brain have grown to so great a size that they conceal all the other parts from the superficial points of view represented in the diagram.