But I must return to my subject. The Invertebrates are also eloquent to the fact of abnormal conditions having prevailed when their remains were entombed. We could go through the whole list, but it is the same old story of abnormal deposits, essentially different from anything that is being made to-day.
Where, for instance, in the modern seas, will we find the remains of polyp-corals now being intercalated between beds of clays or sands over vast areas, as we find them in the Lias and Oolyte of England and elsewhere? Corals require a definite depth of water, neither too deep nor too shallow, but it must be clear and pure; and nothing but some awful catastrophe could place a bed of coral remains a few feet or a few inches in thickness over the vast areas that we find them. Crinoids require the same clear, pure water, but much deeper, some of the modern kinds living over a mile down, but every student of the science knows that the Subcarboniferous limestone of both Europe and America (called Mountain Limestone in England), so noted for its crinoids and its corals, is constantly found intercalated between shale or sandstone, or between the coal beds themselves as at Springfield, Ill., or in the Lower Coal Measures of Westmorland County, Pa. There are of course, here and there, great masses of these rocks which represent an original formation by growth in situ; but no sane man can say this for these great sheets perhaps only a few inches in thickness, for in many cases they show a stratified or bedded structure just as much as a sandstone or a shale. In some tables given by Dana on pp. 651-2 of his "Manual," compiled from four different localities, I count no less than 23 beds of limestone thus intercalated, though we are not told how many of them contain corals or crinoids. Such details are generally omitted as of little consequence.
Next, let us try the Lamellibranchs, such as the clam, oyster, and other true bivalves. These creatures have an arrangement in the hinge region by which the valves of the shell tend to open, but during life are held together by the adductor muscles. When dead, however, these muscles relax and decay, and then the valves spread wide open. Of course there are some, such as certain kinds of clams, which burrow in the mud or sand, and the shells of these, if they happened to die a natural death in their holes, could not spread very far apart. However some mud must even then wash into their burrows and into their empty shells. But many kinds of bivalves do not thus burrow in the ground; and when the fossils of such kinds are found in quantity with the valves applied and often hollow, as is so frequently the case in many of the "older" rocks, I cannot see how we are to understand any ordinary conditions of deposit. And yet we are gravely assured by a high authority, that "A sudden burial is not necessary to entombment in this condition."
Or, let us take the Brachiopods. These have a bivalve shell, the parts of which, however, are not pulled apart after death, and only need to open a little way even in life to admit the sea water which brings them their food. Yet, though the valves do not gape after death, there is when dead and empty a hole at the hinge or beak, which would readily admit mud if such were present in the water, or if the shells after death were subject to the ordinary movements of tide, wave and current. Yet Dawson[63] says of the Brachiopods, Spirifer and Athyris:
"I may mention here that in all the Carboniferous limestones of Nova Scotia the shells of this family are usually found with the valves closed and the interior often hollow."
Of course he tries to explain how this state of things might occur "in deep and clear water"—for some of the modern species are found in the clear depths 18,000 feet down—and he thinks that their entombment in this condition "does not prove that the death of the animals was sudden." But we now know that there is no means of producing a stratified formation in this "deep and clear water," and hence that some revolution of nature is implied by the conditions in which we find them.
Some people seem to have converted David Hume's famous sentence into a scientific formula, thus: "Anything contrary to Uniformity is impossible: hence no amount of evidence can prove anything contrary to Uniformity."
For the trouble in this case is that, not only do such conditions prevail "in all the Carboniferous limestones of Nova Scotia," which must be several thousands of square miles in extent, but in the Devonian shales and Silurian limestones of Ontario and the Middle States at least—perhaps over the rest of the world—the Brachiopods are found in this same tell-tale condition, and it would establish a very dangerous precedent to admit abnormal conditions in even a single case.
I have only touched upon the voluminous evidence that might be adduced in the case of the lower forms of life. Had I the space, I might show how the marvelously preserved plants of the coal beds tell the same story. But we must pass on to consider the remains of the larger land animals. I have already given a quotation from Dana about the mammoth and rhinoceros in Northern Siberia, where he says that their encasing in ice and the perfect preservation of their flesh "shows that the cold finally became suddenly extreme, as of a single winter's night, and knew no relenting afterward." Not very many serious attempts have been made to account for this remarkable state of things, which is a protest against uniformity that can be appreciated by a child, and I never heard of any theory which attempted to account for the facts without some kind of awful catastrophe.
Many, however, seem to have little idea of the extent of these remains in the Arctic regions. They are not all thus perfectly preserved, for thousands of skeletons are found in localities where the ground thaws out somewhat in the short summer, and here of course, the skin and tissues could not remain intact. Remains of these beasts occur in only a little less abundance over all Western Europe, and the mammoth also in North America, well preserved specimens having been obtained from the Klondike region of Alaska; and there is nothing to forbid the idea that many, if not most of these latter specimens were also at one time enshrined as "mummies" in the ice, which has since melted over the more temperate regions. But we must confine ourselves to the remains in Siberia. Flower and Lydekker tell us that since the tenth century at least, these remains have been quarried for the sake of the ivory tusks, and a regular trade in this fossil ivory, in a state fit for commercial purposes, has been carried on "both eastward to China, and westward to Europe," and that "fossil ivory has its price current as well as wheat."