As the year consists of 52 weeks and 1 day, it is evident that the day which begins and ends the year must occur 53 times; thus the year 1837 begins on Sunday and ends on Sunday; so the following year, 1838, must begin on Monday. As A represented all the Sundays in 1837 and as A always stands for the first day of January, so in 1838 it will represent all the Mondays, and the dominical letter goes back from A to G; so that G represents all the Sundays in 1838, A all the Mondays, B all the Tuesdays, and so on, the dominical letter going back one place in every year of 365 days.
While the following year commences one day later in the week than the year preceding, the dominical letter goes back one place from the preceding year; thus while the year 1865 commenced on Sunday, 1866 on Monday, 1867 on Tuesday, the dominical letters are A, G and F, respectively. Therefore, if every year consisted of 365 days, the dominical cycle would be completed in seven years, so that after seven years the first day of the year would again occur on the same day of the week.
But this order is interrupted every four years by giving February 29 days, thereby making the year to consist of 366 days, which is 52 weeks and two days, so that the following year would commence two days later in the week than the year preceding, thus the year 1888 being leap-year, had two dominical letters, A and G; A for January and February, and G for the rest of the year. The year commenced on Sunday and ended on Monday, making 53 Sundays and 53 Mondays, and the following year, 1889, to commence on Tuesday. It now becomes evident that if the years all consisted of 364 days, or 52 weeks, they would all commence on the same day of the week; if they all consisted of 365 days, or 52 weeks and one day, they would all commence one day later in the week than the year preceding; if they all consisted of 366 days, or 52 weeks and two days, they would commence two days later in the week; if 367 days or 52 weeks and three days, then three days later, and so on, one day later for every additional day. It is also evident that every additional day causes the dominical letter to go back one place. Now in leap-year the 29th day of February is the additional or intercalary day. So one letter for January and February, and another for the rest of the year. If the number of years in the intercalary period were two, and seven being the number of days in the week, their product would be 2 × 7 = 14; fourteen, then, would be the number of years in the cycle. Again, if the number of years in the intercalary period were three, and the number of days in the week being seven, their product would be 3 × 7 = 21; twenty-one would then be the number of years in the cycle. But the number of years in the intercalary period is four, and the number of days in the week is seven, therefore their product is 4 × 7 = 28; twenty-eight is then the number of years in the cycle.
This period is called the dominical or solar cycle, and restores the first day of the year to the same day of the week. At the end of the cycle the dominical letters return again in the same order, on the same days of the month. Thus, for the year 1801, the dominical letter is D; 1802, C; 1803, B; 1804, A and G; and so on, going back five places every four years for twenty-eight years, when the cycle, being ended, D is again dominical letter for 1829, C for 1830, and so on every 28 years forever, according to the Julian rule of intercalation.
But this order is interrupted in the Gregorian calendar at the end of the century by the secular suppression of the leap-year. It is not interrupted, however, at the end of every century, for the leap-year is not suppressed in every fourth centurial year; consequently the cycle will then be continued for two hundred years. It should be here stated that this order continued without interruption from the commencement of the era until the reformation of the calendar in 1582, during which time the Julian calendar, or Old Style was used.
It has already been shown that if the number of years in the intercalary period be multiplied by seven, the number of days in the week, their product will be the number of years in the cycle. Now, in the Gregorian calendar, the intercalary period is 400 years; this number being multiplied by seven, their product would be 2,800 years, as the interval in which the coincidence is restored between the days of the year and the days of the week.
This long period, however, may be reduced to 400 years; for since the dominical letter goes back five places every four years, in 400 years it will go back 500 places in the Julian and 497 in the Gregorian calendar, three intercalations being suppressed in the Gregorian every 400 years. Now 497 is exactly divisible by seven, the number of days in the week, therefore, after 400 years the cycle will be completed, and the dominical letters will return again in the same order, on the same days of the month.
In answer to the question, “Why two dominical letters for leap-year?” we reply, because of the additional or intercalary day after the 28th of February. It has already been shown that every additional day causes the dominical letter to go back one place. As there are 366 days in leap-year, the letter must go back two places, one being used for January and February, and the other for the rest of the year. Did we continue one letter through the year and then go back two places, it would cause confusion in computation, unless the intercalation be made at the end of the year. Whenever the intercalation is made there must necessarily be a change in the dominical letter. Had it been so arranged that the additional day was placed after the 30th of June or September, then the first letter would be used until the intercalation is made in June or September, and the second to the end of the year. Or suppose that the end of the year had been fixed as the time and place for the intercalation, (which would have been much more convenient for computation,) then there would have been no use whatever for the second dominical letter, but at the end of the year we would go back two places; thus, in the year 1888, instead of A being dominical letter for two months merely, it would be continued through the year, and then passing back to F, no use whatever being made of G, and so on at the end of every leap-year. Hence it is evident that this arrangement would have been much more convenient, but we have this order of the months, and the number of days in the months as Augustus Cæsar left them eight years before Christ. The dominical letter probably was not known until the Council of Nice, in the year of our Lord 325, where, in all probability, it had its origin.