As regards an interval of ten days between the two Fridays, there was none; Friday, the 5th, and Friday, the 15th, was one and the same day; there was no interval, nothing ever occurred, there was no time for anything to occur; the edict of the Pope decided it; he said the 5th should be called the 15th, and it was so.

Hence to October the 5th, 1582, the computation should be Old Style; from the 15th to the end of the year New Style.

On what day of the week did the years 1, 2 and 3, of the era commence? None of these numbers can be divided by 4; neither are they divisible by 7; but they may be treated as remainders after dividing by 7. Now each of these numbers of years consists of an even number of weeks with remainders of 1, 2 and 3 days respectively. Hence we have then for the year 1, 3 - 1 = 2; therefore, B being the second letter, is the dominical letter for the year 1. Now reading from B to A, the letter for January, we have B Sunday, C Monday, D Tuesday, etc. Hence January commenced on Saturday.

Then we have for the year 2, 3 - 2 = 1; therefore A being the first letter, is dominical letter for the year 2; hence it is evident that January commenced on Sunday. Again we have for the year 3, 10 - 3 = 7; therefore, G being the seventh letter, is dominical letter for the year 3. Now reading from G to A, the letter for January, we have G Sunday, A Monday; hence January commenced on Monday.

On what day of the week did the year 4 commence? Now we have a number that is divisible by 4, it being the first leap-year in the era, so we have 4 ÷ 4 = 1; 4 + 1 = 5; 5 ÷ 7 = 0, remainder 5. Then 10 - 5 = 5; therefore, E being the 5th letter, is dominical letter for that part of the year which follows the 29th of February, while F, the letter that follows it, is dominical letter for January and February. Now reading from F to A, the letter for January, we have F Sunday, G Monday, A Tuesday; hence January commenced on Tuesday.

Now we have disposed of the first four years of the era; the dominical letters being B, A, G, and F, E. Hence it is evident, while one year consists of an even number of weeks and one day, two years of an even number of weeks and two days, three years of an even number of weeks and three days, that every fourth year, by intercalation, is made to consist of 366 days; so that four years consist of an even number of weeks and five days; for we have (4 ÷ 4) + 4 = 5, the dominical letter going back from G in the year 3, to F, for January and February in the year 4, and from F to E for the rest of the year, causing the following year to commence two days later in the week than the year preceding.

The year 1 had 53 Saturdays; the year 2, 53 Sundays; the year 3, 53 Mondays, and the year 4, 53 Tuesdays and 53 Wednesdays, causing the year 5 to commence on Thursday, two days later in the week than the preceding year. Now what is true concerning the first four years of the era, is true concerning all the future years, and the reason for the divisions, additions and subtractions in finding the dominical letter is evident.

The Declaration of Independence was signed July 4, 1776. On what day of the week did it occur? We have then 1776 ÷ 4 = 444; 1776 + 444 = 2220; 2220 ÷ 7 = 317, remainder 1. Then 7 - 1 = 6, therefore F and G are the dominical letters for 1776, G for January and February, and F for the rest of the year. Now reading from F to G, the letter for July, we have F Sunday, G Monday; hence July commenced on Monday, and the fourth was Thursday. On what day of the week did Lee surrender to Grant, which occurred on April 9th, 1865? We have then 1865 ÷ 4 = 466+; 1865 + 466 = 2331; 2331 ÷ 7 = 333, remainder 0. Then 1 - 0 = 1; therefore, A being the first letter, is dominical letter for 1865. Now reading from A to G, the letter for April, we have A Sunday, B Monday, C Tuesday, etc. Hence April commenced on Saturday, and the 9th was Sunday.

Benjamin Harrison was inaugurated President of the United States on Monday, March 4, 1889. On what day of the week will the 4th of March fall in 1989? We have then 1989 ÷ 4 = 497+; 1989 + 497 = 2486; 2486 ÷ 7 = 355, remainder 1. Then 2 - 1 = 1; therefore, A being the first letter, is dominical letter for 1989. Now, reading from A to D, the letter for March, we have A Sunday, B Monday, C Tuesday, and D Wednesday; hence March will commence on Wednesday, and the 4th will fall on Saturday. Columbus landed on the island of San Salvador on Friday, October 12, 1492. On what day of the month and on what day of the week will the four hundredth anniversary fall in 1892?

The day of the month on which Columbus landed is, of course, the day to be observed in commemoration of that event. The Julian calendar, which was then in use throughout Europe, and the very best that had ever been given to the world, made the year too long by more than eleven minutes. Those eleven minutes a year had accumulated, from the council of Nice, in 325, to the discovery of America, in 1492, to nine days, so that the civil year was nine days behind the true or solar time; that is, when the Earth, in her annual revolution, had arrived at that point of the ecliptic coinciding with the 21st of October, the civil year, according to the Julian calendar, was the 12th.