Man has promoted the multiplication of fish by making war on their brute enemies, but he has by no means thereby compensated his own greater destructiveness.[105] The bird and beast of prey, whether on land or in the water, hunt only as long as they feel the stimulus of hunger, their ravages are limited by the demands of present appetite, and they do not wastefully destroy what they cannot consume. Man, on the contrary, angles to-day that he may dine to-morrow; he takes and dries millions of fish on the banks of Newfoundland, that the fervent Catholic of the shores of the Mediterranean may have wherewithal to satisfy the cravings of the stomach during next year's Lent, without imperilling his soul by violating the discipline of the papal church; and all the arrangements of his fisheries are so organized as to involve the destruction of many more fish than are secured for human use, and the loss of a large proportion of the annual harvest of the sea in the process of curing, or in transportation to the places of its consumption.[106]

Fish are more affected than quadrupeds by slight and even imperceptible differences in their breeding places and feeding grounds. Every river, every brook, every lake stamps a special character upon its salmon, its shad, and its trout, which is at once recognized by those who deal in or consume them. No skill can give the fish fattened by food selected and prepared by man the flavor of those which are nourished at the table of nature, and the trout of the artificial ponds in Germany and Switzerland are so inferior to the brook fish of the same species and climate, that it is hard to believe them identical. The superior sapidity of the American trout to the European species, which is familiar to every one acquainted with both continents, is probably due less to specific difference than to the fact that, even in the parts of the New World which have been longest cultivated, wild nature is not yet tamed down to the character it has assumed in the Old, and which it will acquire in America also when her civilization shall be as ancient as is now that of Europe.

Man has hitherto hardly anywhere produced such climatic or other changes as would suffice of themselves totally to banish the wild inhabitants of the dry land, and the disappearance of the native birds and quadrupeds from particular localities is to be ascribed quite as much to his direct persecutions as to the want of forest shelter, of appropriate food, or of other conditions indispensable to their existence. But almost all the processes of agriculture, and of mechanical and chemical industry, are fatally destructive to aquatic animals within reach of their influence. When, in consequence of clearing the woods, the changes already described as thereby produced in the beds and currents of rivers, are in progress, the spawning grounds of fish are exposed from year to year to a succession of mechanical disturbances; the temperature of the water is higher in summer, colder in winter, than when it was shaded and protected by wood; the smaller organisms, which formed the sustenance of the young fry, disappear or are reduced in numbers, and new enemies are added to the old foes that preyed upon them; the increased turbidness of the water in the annual inundations chokes the fish; and, finally, the quickened velocity of its current sweeps them down into the larger rivers or into the sea, before they are yet strong enough to support so great a change of circumstances.[107] Industrial operations are not less destructive to fish which live or spawn in fresh water. Milldams impede their migrations, if they do not absolutely prevent them, the sawdust from lumber mills clogs their gills, and the thousand deleterious mineral substances, discharged into rivers from metallurgical, chemical, and manufacturing establishments, poison them by shoals.

Minute Organisms.

Besides the larger creatures of the land and of the sea, the quadrupeds, the reptiles, the birds, the amphibia, the crustacea, the fish, the insects, and the worms, there are other countless forms of vital being. Earth, water, the ducts and fluids of vegetable and of animal life, the very air we breathe, are peopled by minute organisms which perform most important functions in both the living and the inanimate kingdoms of nature. Of the offices assigned to these creatures, the most familiar to common observation is the extraction of lime, and more rarely, of silex, from the waters inhabited by them, and the deposit of these minerals in a solid form, either as the material of their habitations or as the exuviæ of their bodies. The microscope and other means of scientific observation assure us that the chalk beds of England and of France, the coral reefs of marine waters in warm climates, vast calcareous and silicious deposits in the sea and in many fresh-water ponds, the common polishing earths and slates, and many species of apparently dense and solid rock, are the work of the humble organisms of which I speak, often, indeed, of animalculæ so small as to become visible only by the aid of lenses magnifying a hundred times the linear measures. It is popularly supposed that animalculæ, or what are commonly embraced under the vague name of infusoria, inhabit the water alone, but the atmospheric dust transported by every wind and deposited by every calm is full of microscopic life or of its relics. The soil on which the city of Berlin stands, contains at the depth of ten or fifteen feet below the surface, living elaborators of silex;[108] and a microscopic examination of a handful of earth connected with the material evidences of guilt has enabled the naturalist to point out the very spot where a crime was committed. It has been computed that one sixth part of the solid matter let fall by great rivers at their outlets consists of still recognizable infusory shells and shields, and, as the friction of rolling water must reduce much of these fragile structures to a state of comminution which even the microscope cannot resolve into distinct particles and identify as relics of animal or of vegetable life, we must conclude that a considerably larger proportion of river deposits is really the product of animalcules.[109]

It is evident that the chemical, and in many cases the mechanical character of a great number of the objects important in the material economy of human life, must be affected by the presence of so large an organic element in their substance, and it is equally obvious that all agricultural and all industrial operations tend to disturb the natural arrangements of this element, to increase or to diminish the special adaptation of every medium in which it lives to the particular orders of being inhabited by it. The conversion of woodland into pasturage, of pasture into plough land, of swamp or of shallow sea into dry ground, the rotations of cultivated crops, must prove fatal to millions of living things upon every rood of surface thus deranged by man, and must, at the same time, more or less fully compensate this destruction of life by promoting the growth and multiplication of other tribes equally minute in dimensions.

I do not know that man has yet endeavored to avail himself, by artificial contrivances, of the agency of these wonderful architects and manufacturers. We are hardly well enough acquainted with their natural economy to devise means to turn their industry to profitable account, and they are in very many cases too slow in producing visible results for an age so impatient as ours. The over-civilization of the nineteenth century cannot wait for wealth to be amassed by infinitesimal gains, and we are in haste to speculate upon the powers of nature, as we do upon objects of bargain and sale in our trafficking one with another. But there are still some cases where the little we know of a life, whose workings are invisible to the naked eye, suggests the possibility of advantageously directing the efforts of troops of artisans that we cannot see. Upon coasts occupied by the corallines, the reef-building animalcule does not work near the mouth of rivers. Hence the change of the outlet of a stream, often a very easy matter, may promote the construction of a barrier to coast navigation at one point, and check the formation of a reef at another, by diverting a current of fresh water from the former and pouring it into the sea at the latter. Cases may probably be found in tropical seas, where rivers have prevented the working of the coral animalcules in straits separating islands from each other or from the mainland. The diversion of such streams might remove this obstacle, and reefs consequently be formed which should convert an archipelago into a single large island, and finally join that to the neighboring continent.

Quatrefages proposed to destroy the teredo in harbors by impregnating the water with a mineral solution fatal to them. Perhaps the labors of the coralline animals might be arrested over a considerable extent of sea coast by similar means. The reef builders are leisurely architects, but the precious coral is formed so rapidly that the beds may be refished advantageously as often as once in ten years.[110] It does not seem impossible that this coral might be transplanted to the American coast, where the Gulf stream would furnish a suitable temperature beyond the climatic limits that otherwise confine its growth; and thus a new source of profit might perhaps be added to the scanty returns of the hardy fisherman.

In certain geological formations, the diatomaceæ deposit, at the bottom of fresh-water ponds, beds of silicious shields, valuable as a material for a species of very light firebrick, in the manufacture of water glass and of hydraulic cement, and ultimately, doubtless, in many yet undiscovered industrial processes. An attentive study of the conditions favorable to the propagation of the diatomaceæ might perhaps help us to profit directly by the productivity of this organism, and, at the same time, disclose secrets of nature capable of being turned to valuable account in dealing with silicious rocks, and the metal which is the base of them. Our acquaintance with the obscure and infinitesimal life of which I have now been treating is very recent, and still very imperfect. We know that it is of vast importance in the economy of nature, but we are so ambitious to grasp the great, so little accustomed to occupy ourselves with the minute, that we are not yet prepared to enter seriously upon the question how far we can control and direct the operations, not of unembodied physical forces, but of beings, in popular apprehension, almost as immaterial as they.

Nature has no unit of magnitude by which she measures her works. Man takes his standards of dimension from himself. The hair's breadth was his minimum until the microscope told him that there are animated creatures to which one of the hairs of his head is a larger cylinder than is the trunk of the giant California redwood to him. He borrows his inch from the breadth of his thumb, his palm and span from the width of his hand and the spread of his fingers, his foot from the length of the organ so named; his cubit is the distance from the tip of his middle finger to his elbow, and his fathom is the space he can measure with his outstretched arms. To a being who instinctively finds the standard of all magnitudes in his own material frame, all objects exceeding his own dimensions are absolutely great, all falling short of them absolutely small. Hence we habitually regard the whale and the elephant as essentially large and therefore important creatures, the animalcule as an essentially small and therefore unimportant organism. But no geological formation owes its origin to the labors or the remains of the huge mammal, while the animalcule composes, or has furnished, the substance of strata thousands of feet in thickness, and extending, in unbroken beds, over many degrees of terrestrial surface. If man is destined to inhabit the earth much longer, and to advance in natural knowledge with the rapidity which has marked his progress in physical science for the last two or three centuries, he will learn to put a wiser estimate on the works of creation, and will derive not only great instruction from studying the ways of nature in her obscurest, humblest walks, but great material advantage from stimulating her productive energies in provinces of her empire hitherto regarded as forever inaccessible, utterly barren.[111]